SR LELCALLITTIag,
.

AR BERIEn

AN INTRCDUCTION
TO MICROCOMPUTERS

VOLUME O

I THE BEGINNER'S BOOK §

2nd Edition

O e

RS A

PRESTON POLYTECHNIC

LIBRARY & LEARNING RESOURCES SERVICE
This book must be returned on or before the date last stamped

-
I !:"n. 1s

AR RV

Ty o R B

L ll&i&&?#-

27 k1950
971, Fep. 1992

-1, JUL. 20

——"

AN INTRODUCTION
TO MICROCOMPUTERS

Py

VOLUME O
THE BEGINNER'S BOOK

2nd Edition

by Adam Osborne

Osborne & Associates, Inc.
Berkeley, California

For information on translations and book distributors outside of the United S
; tates of
America, please write Osborne & Associates, Inc. o

18t printing (15t edition) October 1977
2" printing (2" edition) May 1979

Library of Congress 76-374891
ISBN 0-931988-08-X

Photographs in this book courtesy of:

The Byte Shop
Digital Equipment Corporation
Heath Company -
Heuristics, Inc.

Processor Technology Corporation
Qume Corporation

Technical Design Labsl Al !
Vector Graphics, Inc. UCESSION Ng (2 5 -~

&

Copyright © 1977, 1979 by Adam Osborne

All right reserved. Printed in the United States of America. No part of this publication may be

mpmduoed slomc! in a retrieval system, or transmitted in any form or by any means,
olactronoc mechanical, photocopying, recording, or otherwise, without the prior written per-
mission of the publishers.

Published by Adam Osborne & Associates, Inc.
630 Bancroft Way, Berkeley, California 94710

CHAPTER

TABLE OF CONTENTS

INTRODUCTION
THE PARTS THAT MAKE THE WHOLE

A MICROCOMPUTER SYSTEM

THE VIDEO DISPLAY

THE KEYBOARD

THE PRINTER

COMPONENTS THAT STORE A LOT OF INFORMATION

MEMORY

FLOPPY DISK UNITS

RIGID DISK UNITS

DISK ACCESS

LOGICAL AND PHYSICAL RECORDS
RECORDS AND FILES

CASSETTE UNITS

PAPER TAPE UNITS

USE A MICROCOMPUTER AND WATCH IT GROW

CREATING A PROGRAM AND MAKING IT WORK
A MICROCOMPUTER FRONT PANEL
THE TELETYPE TERMINAL

USING A SIMPLE MICROCOMPUTER SYSTEM
READ ONLY MEMORY
KEYBOARDS

SOME MICROCOMPUTER APPLICATIONS

MICROCOMPUTER SYSTEM COMPONENTS — WHAT YOU SEE

IS NOT ALWAYS WHAT YOU GET

PHYSICAL AND LOGICAL UNITS IN MICROCOMPUTER
SYSTEMS
MICROCOMPUTER HARDWARE COMPONENTS
LOGICAL UNIT REASSIGNMENTS
DEVICE DRIVERS
MICROCOMPUTER SYSTEM COMPONENT OPTIONS
VIDEO DISPLAY UNIT OPTIONS
KEYBOARD OPTIONS
PRINTER OPTIONS
BULK STORAGE UNIT OPTIONS

GETTING DOWN TO BASICS

NUMBERS AND LOGIC

BINARY DATA
THE BINARY NUMBER SYSTEM
BINARY TO DECIMAL CONVERSION
DECIMAL TO BINARY CONVERSION
BITS. NIBBLES AND BYTES

PAGE

ORIPIRI N = = =y W
OO EN =& W

R R T i e T T B i
R = =D ~
oMo,

ENTS (Continued)
TABLE OF CONTENTS (Continued) TABLE OF CONT ontinu

E
CHAPTER PAGE CHAPTER PAG
RESSING LOGIC 6-30
B'ﬁ&“ﬁ'aﬁ"&“."fé'ﬁ i‘}Z EHE&%?&YMASEMORY ADDRESSING AND THE PROGRAM -
BINARY SUBTRACTION AND NEGATIVE NUMBERS 4-19 oA aAE e PG O 6.39
OCTAL AND HEXADECIVAL NOWBERS P DATA MEMORY ACDREGSING REGISTERS 042
- s |
OCTAL-HEXADECIMAL CONVERSIONS 6 NCTACTION SE76 AND PROGRAMMING 6-44
DECIMAL-OCTAL AND DECIMAL-HEXADECIMAL
CONVERSIONS 4-31
CHARACTER CODES 4-33
COMPUTER LOGIC AND BOOLEAN OPERATIONS 4.35
STATUS FLAGS 4-35
LOGICAL OPERATORS 4-37
THE NOT OPERATOR 4-37
THE AND OPERATOR 4-38
THE OR OPERATOR 4-39
THE XOR OPERATOR 4-40
5 INSIDE A MICROCOMPUTER 5-1
ABOUT PROGRAMMING LANGUAGES 5-1
A COMPARISON OF HIGHER LEVEL LANGUAGES
AND ASSEMBLY LANGUAGE 5-5
MICROCOMPUTER FUNCTIONAL LOGIC 5-9
INFORMATION PATHS 5-11
THE CENTRAL PROCESSING UNIT 5-12
SERIAL LOGIC 5-12
SERIAL LOGIC STEP 5-16
CENTRAL PROCESSING UNIT LOCAL DATA STORAGE 5-17
PROGRAM MEMORY 5-18
MEMORY LOCATIONS AND ADDRESSES 5-19
DATA MEMORY 5-20
ADDITION PROGRAM EVENT SEQUENCE 5-20
6 PUTTING IT ALL TOGETHER 6-1
WORD SIZE 6-1
BUSSES 6-3
REPRESENTING BUS LINE SIGNALS 6-4
REGISTERS 6-5
THE ARITHMETIC AND LOGIC UNIT 6-5
ADDITIONAL CPU LOGIC 6-9
DATA REGISTERS 6-9
USING DATA REGISTERS 6-10
THE INSTRUCTION REGISTER AND CONTROL UNIT 6-13
LOGIC CONCEPTS AND TIMING 6-16
LOGIC TO MOVE BINARY DATA 6-16
THE CLOCK SIGNAL AND INSTRUCTION EXECUTION TIMING 6-24
MEMORY ACCESS 6-27

FIGURE

SDE0 & Pad it an
M- = oA

|'
¥
E

open
b

TABLE

4-1

4-2

4.3

LIST OF FIGURES

PAGE
A Typical Microcomputer System 1-2
A Floppy Disk’s Recorded Surface 1-18
A Flowchart For Joe's Bill Paying Program 2-24
Log!cal Units Surrounding A Microcomputer 3-3
Logical Units Identified For The Microcomputer System
Of Figure 1-1 34
Log!'cal Units Identified For A Teletype Terminal 3-4
Logical Units And Physical Units Connected Using A
Device Driver 3-1
Using Device Driver Programs To Replace Physical Units 3-13
Flowchart For A Simple Video Display Driver Program 3-15
Packed Byte Disassembly-And ASCIl Code Creation Logic 4.36
Microcomputer Functional Logic 5-9
Microcomputer Functional Logic Involved In Data Movement
And Storage 5-10
Microcomputer Functional Logic Involved In Data
Modification 5-10
The Arithmetic And Logic Unit 6-6
Microcomputer System Busses 6-31
LIST OF TABLES
PAGE
All Four-Digit Binary Numbers And Their
Decimal Representations 4-13
Th_e Largest Number That Can Be Represented By Binary Numbers
With 1 Through 16 Digits VA
Number Systems 4-30

vi

INDEX

QUICK INDEX

ADDEND
ADDRESS BUS
ALU

ASCII
ASSEMBLER
AUGEND

BELT PRINTERS

BINARY DATA MULTIPLE INTERPRETATIONS
BINARY NOTATION

BIT

BIT MASK

BOOTSTRAP LOADER

BULK INFORMATION STORAGE LOGICAL UNIT
BYTE

CASSETTE INTERFACE

CASSETTE INTER-RECORD GAP
CASSETTE READING AND WRITING
CASSETTE RECORDS

CASSETTE TAPE RELIABILITY
CASSETTE UNIT OPTIONS
CENTRAL PROCESSING UNIT
CHAINED SECTORS

CLOCK PERIOD

CLOCK SIGNAL FREQUENCY
COMMON PRINTER OPTIONS
COMPILER

CONTROL UNIT

CPU

CPU MEMORY

CREATING THE TWOS COMPLEMENT OF A NUMBER
CRT

CUBE OF A NUMBER

DAISY WHEEL PRINTER

DATA

DATA BUS

DEBOUNCING KEYS

DECIMAL NOTATION

DECIMAL NUMBERS

DEVICE COMPATIBILITY
DIRECT MEMORY ACCESS
DMA

DOUBLE DENSITY FLOPPY DISK

ECHO
ECHOING

vil

PAGE

£ =
- w

i P
- gm

—-h_'n
BN —-Ww W

bABOW OOADOO
— p

M{:lJM

]

i

WM R R =

N — -nmmw.bhwaafw -hs—?oammmwmm-.-cpua—-—-—-

-

INDEX

QUICK INDEX (Continued)

EIGHTS DIGIT
ERROR DETECTION CODES
ERROR RECOVERY

FLOPPY DISK FORMATTING
FLOPPY DISK UNIT OPTIONS
FLOPPY ROMS

FLOWCHART SYMBOLS
FRICTION FEED PAPER ADVANCE
FRONT PANEL FUNCTIONS

GATE SIGNAL
GRAPHIC DISPLAY

HARD SECTORED DISK

HIGH ORDER DIGIT

HORIZONTAL SCROLLING

HOW THIS BOOK HAS BEEN PRINTED

INFORMATION ENTRY LOGICAL UNIT
INK JET PRINTERS

INSTRUCTION FETCH

INSTRUCTION SET

INSTRUCTION STEP

INSTRUCTION TIMING
INSTRUCTIONS

INTERFACE

INTERPRETER

KEYBOARD BUFFER
KEYBOARD ENTRY WITHOUT ECHO

LARGE SCALE INTEGRATION
LIGHT PEN

LOGICAL OPERATORS
LOGICAL RECORD

LOW ORDER DIGIT

LSl

MACHINE CYCLE
MAINFRAMES

MATRIX PRINTERS
MEGAHERTZ

MEMORY ADDRESSING
MEMORY READ CONTROL
MEMORY READ OPERATION
MEMORY WRITE CONTROL
MEMORY WRITE OPERATION
MHZ

MICROCOMPUTER CONTROL FROM THE KEYBOARD

viii

PAGE

4-8
1-32
2-22

1-20
3-38
1-28
2-23
3-35
24

6-16
3-22

1-19

INDEX

QUICK INDEX (Continued)

MICROCOMPUTERS
MICROSECOND
MINI FLOPPY
MINICOMPUTERS
MINUEND
NANOSECOND
NIBBLE

NUMBER BASE

OBJECT PROGRAM

ONES COMPLEMENT

ONES DIGIT

OPERANDS

OPERATOR MESSAGE LOGICAL UNIT

PACKED BYTES

PAPER TAPE CHANNELS
PAPER TAPE CHARACTERS
PAPER TAPE SPROCKET FEED
PAPER TAPE UNIT OPTIONS
PHYSICAL RECORD

PRINT LINE LENGTH

PRINT MECHANISMS
PRINTER CHARACTER SET
PROGRAM

PROGRAM COUNTER
PROGRAM DEBUGGING
PROGRAM LOGIC FLOWCHART
PROGRAM MEMORY
PROGRAMS

PROPORTIONAL SPACING

RANDOM ACCESS

RECORD

REDUNDANT RECORDING
RESTARTING

RESULTS OUTPUT LOGICAL UNIT
REVERSE DISPLAY

REVERSED LINE PRINTING
ROLLOVER

ROM

SAVING RESULTS ON CASSETTE
SCREEN CURSOR

SECTOR

SECTOR CHAINING

SERIAL DEVICES

SIGN OF BINARY NUMBERS

©

wm-nw—‘—li—'h wo
W N
wwwmmgm

S8RNYYY

1]

BN aWw NWW
% ik ke
DaBozo IBE

INDEX

c

NS

QUICK INDEX (Continued)

SIGNAL LEADING EDGE

SIGNAL TRAILING EDGE

SOFT SECTORED DISK

SOURCE PROGRAM

SPROCKET FEED PAPER ADVANCE
SQUARE OF A NUMBER

STRING

SUBTRAHEND

TELETYPE LINE MODE

TELETYPE LOCAL MODE
TELETYPE PAPER TAPE READER
TELETYPE PRINTER AND PAPER TAPE PUNCH
TELETYPE PUNCH B.SP CONTROL
TELETYPE PUNCH REL CONTROL
TENS DIGIT

THERMAL PRINTERS
THOUSANDS DIGIT

TOUCH SWITCHES

TRACKS

TWOS COMPLEMENT

TWOS DIGIT

TWO HEAD PRINTERS

UPPER AND LOWER CASE DISPLAYS

vDU
VERTICAL SCROLLING

WORD
ZERO STATUS FLAG

PAGE

6-24
6-24
1-20
53

3-35

4-34
4-20

28
2.8

2-10
2-13
2-15
2-15
4-4

3-31
4-8

3-29
1-16
4-26
a4

3-34

3-20

1-4
3-21

4-15
6-13

INTRODUCTION

This is a book about computers; it has been written for readers who know nothing
about computers.

This book has been written for two audiences:

1) For those of you who have a real interest in learning how to use computers.

2) For everyone else — who must live with computers, like it or not, and had
therefore better know a little about them.

For those of you who have a real interest in learning how to use computers, this is
the first in a series of books. This book will explain superficially how computers
work and what they can do. After reading this book you will be ready to move on
to “Volume 1 — Basic Concepts’’, which gives you the information you will need
in order to use computers.

But what if you can live a happy life and never program a computer — or even
touch one? Why read this book? The answer, quite simply, is that computers in
business and government have run wild; moreover, they have become the vehi-
cles for a formidable new breed of criminals. And it is going to take a population
who understand computers to bring them under control.

Let us begin by looking at computers in society.

Computers, like the automobile and electricity, are an integral part of daily life in
any industrial society. During any normal day your life will be touched by com-
puters many times.

Your name is probably on mailing lists — all maintained by computers; and that is
why you receive junk mail. A large computer can print thousands of address labels
in a minute. If a typist had to type address labels, you would never receive any
junk mail; the sender could not afford the cost of the typist.

Credit cards exist because of computers. If human beings had to do all of the
bookkeeping associated with credit card accounts.by hand, the cost of accounting
would make credit cards uneconomical.

Consider airline ticket reservations. You can walk up to a ticket counter and re-
quest a reservation on any flight, anywhere in the country; an operator is able to
tell you instantly whether seats are available; and if you make a reservation, it is
recorded — also instantly. If another customer, hundreds of miles away, requests
the same seat ten seconds later, the customer will not be sold your ticket. Over-
booking on airlines is intentional; computers tell the airlines exactly how many
tickets have been sold, and on which flights.

The very size of government is a direct outgrowth of computers. In reality,
government is little more than a vast accounting system; government collects
money, budgets it and spends it. The very existence of sound government is
based on its ability to track its income and its expenditures; government would
surely collapse — jokes notwithstanding — if it did not have a pretty good idea of
what it was doing. The sheer magnitude of government today is a direct result of
its ability to manage huge cash flows — which it can do only by using computers.

i

WA AREITE SATE o 5o e i PO e T e W WO A, T T oL N LR L e W T e B e T TR 0 G

s - " S
There is an urgent need for an intelligent population in any industrial society

And the future is going to bring us more computers, not less. The National US. derstand just how simple computers really are and how easily they may be used or

Census of 1950 was made possible by ENIAC |, considered by some to be the

world’s first commercial computer, ENIAC | cost more than half a million dollars abused. om-
(that is 1950 dollars), Today you can buy the same computing power for $10 (that The myths surrounding computers result from _th: fact ::.a; l:i::u:or:gor:gt?mcn 20
is 1977 dollars). In the late 50's and early 60's computers costing a million dollars puters really were million dollar monsters that fille _atroo tacs adar
lor more) started to handle data processing for very large companies — who could years ago, the president of Sperry Rand — who got into : ‘f,chgonnral use and pro-
afford the high price. An equivalent computer system is available today for $2,000 decided that computers would always be too expel'.::-“;horel'ore Soaviy Basit bro-
or $3,000 — cheap enough to do the bookkeeping for the local drugstore. Indeed, bably no more than 50 computers would ever be bui ' the biggest business blun-
Computers now are so inexpensive that they drive video games, children’s toys, | maturely got out of the business. Now that was one o

f"t"fe every auto bil il f i filli
puters Qontro"ing the en i | . r which that company pre: t saw g

e two or three comput ders of all time. The Cﬂlllputﬂ n T sidﬂll illing a room

| and costlllg a million dollars todav will fit on your '"lgelnall and costs a very few

dollars.

) v itli to
We have all seen what electronics has done to the calculator and watch indus- If a computing machine is so big that it fills a room, if it ctz:‘s:: i; :;";::gd:f":l:ise
tries; electronic calculators and watches are driven by devices that are, in reality, build — and hundreds of thousan:!s more dollars to u:i:; oncinticrati Iasicbant
small computers. The music industry will be the next to be revolutionized by com- machines will be built and they will I?s used 0!1|Y to ;0 [el t & Tow collanit
puters and electronics. Soon you will be able to buy, at low cost, home recording problems. But take the same computing machine, re u:f:r 4 1o €3 1t 1n-Howe 8
equipment more sophisticated than recording studios possess today. Within ten and its size to that of your fingernail and you can a

years records and tape cassettes will be replaced by tiny electronic memories.
That spells chaos for the music industry, and it puts a computer in every record
player.(Make that “electronic memory’ player.)

pliances and games. &

That, in essence, is what happened to the compu}er. A_st :.fe :::I; i:llr;m::est:;:w
" \ uting device with e t

today you can buy for $10 a comp " i

The ubiquitous presence of computers in our daily lives is the direct result of the cspe:ilz;ias as the ENIAC | computer, which cost half a million dol : '

shenomara ey Gy & i ofciancy o T o During the last 25 years there have been a whole series of new inventions which

ildi i ircuits — refore
have dramatically reduced the cost of building computing circuits ina::. ;'::ma :tal
computers. But surprisingly, there have been :er:r f?::l ‘::::lg(at:rough s

ith each new technolog d ;
: ‘ i is fi computer concepts. Thus, wit : st
The first dishonest auto mechanic probably swindled his first customer a few huiltpthe s i et it hnt ARG mc:r:?:nt: Il’e and e have
months after the first automobile was sold; and the first dishonest programmer built a new, more powerful computer for the old price. Thi
probably used a computer for criminal purposes soon after computer programs

capabilities that make the computer such a powerful data processing tool also
make it a formidable weapon for fraud, crime, and simple nonsense.

follows:

honest programmers within honest companies. And the way things stand today,
only the very stupid, or the very unlucky will ever be discovered. We have, as a
society, placed no obstacles in the path of anyone wishing to use a computer for
any purpose, nor have we made the slightest attempt to monitor the manner in
which computers are used. Not one in a hundred legislators know enough about 10 000

all, the computer printed it out, therefore the reader of the computer printout
assumed that the insurance policies had to be real. 100

In reality the use of computers in our society is totally out of control. The things
we do with computers far exceed our ability to monitor what is being done. Com- |
puters may well be the Achilles’ Heel of our entire technological society; an
enemy could bring this country to its knees faster by manipulating computer |
records than by dropping bombs. After all, when records of millions and billions of | 1950 1960 i
dollars are held in transient, magnetized zones on fast-moving computer equip- .-

ment, the task of suitably manipulating these magnetized zones is not particularly

formidable. A few well placed saboteurs could so scramble this country’s financial

records that no one would know any longer who owned or owed what money, f

where any government project stood, or what any business or agency was doing.

. s L L3
xu

ﬁ—i_

As the years went by, the difference between the most powerful computer and
the most expensive computer became more pronounced. In the illustration above,
the lines marked (1) , @ .. G and (8) identify approximately
equivalent computers, that is to say. computers with about the same perfor-
mance. For example, look at line - What this line says is that there was a
computer which sold in 1960 for $1,000,000 as the world’s most powerful com-
puter; an essentially equivalent computer was available in 1975 for approx-
imately $1,000 — but it was no longer thought of as a powerful computer when
compared to all of the new, much more powerful computers available in 1975.

With the huge differences in computer price and perfor- | MINICOMPUTERS
mance that appeared during the 60’s it was inevitable that MAINFRAMES

some product stratification would occur. Around 1965 the

most inexpensive computers started to be called minicom-

puters. More powerful computers, by way of differentiation, were called
mainframes. The prefix “‘mini’’ arose from the fact that the new, low cost com-
puters were much smaller, physically, than their predecessors.

Now if you find ten people who are supposed to know, and you ask each to define
the difference between a minicomputer and a mainframe computer, you will likely
get ten totally different definitions. Price and packaging are really the only
differences between mainframe computers and minicomputers. Minicomputers
are much less expensive than mainframe computers and in general they are less
powerful, although there is a very considerable overlap; the most powerful pro-
ducts sold as minicomputers are a good deal more powerful than the least power-
ful products sold as mainframes. Mainframes are packaged as business data pro-
cessing or scientific data processing systems, while minicomputers are sald in a
variety of ways, some of which are identical to mainframe computers while others
are not. People who have worked for a long time with mainframe computers and
minicomputers might claim to identify subtle differences between the two, but
many of these differences are too subtle to recognize. A minicomputer is a
minicomputer, and a mainframe is a mainframe, because that is what the manufac-
turer calls it,

To some extent history has repeated itself with the ad- BICHOCDMPUTERS I
vent of the microcomputer. Around 1972 very low cost
computer products began to appear and were called microcomputers. The prefix
“micro’* applied to the very small size of the product as compared to a mini, just
as the prefix mini was based on the smaller size of the product as compared to a
mainframe. But once again there is a substantial overlap between products refer-
red to as microcomputers and products referred to as minicomputers. This overlap
applies both to power and packaging. The most powerful microcomputers availa-
ble today are more powerful than the least powerful minicomputers: while
microcomputers are frequently displacing minicomputers, or being used in exactly
the same way as minicomputers. In addition microcomputers are frequently used,
because of their small size and very low price, in applications that could never
have used a minicomputer. These new ““microcomputer-only’* applications have
resulted in some real differences appearing in products sold as microcomputers, as
compared to products sold as minicomputers.

It would be pointless to start describing differences between microcomputers and
minicomputers in this book. Until you understand something about computers in
general, there is no point trying to differentiate a microcomputer from a minicom-
puter. For the moment, therefore, this is all you need to understand: there is no
fundamental difference between the largest mainframe computer and the
smallest microcomputer; the major difference is in price, power and size.

HOW THIS
BOOK HAS
BEEN PRINTED

f information,
This book covers a very broad range of

therefore the text has been printo_d- in boltdfaoe and
lightface. The purpose of having two print faces is to let you

i nformation you
ick your way through the book. bypassmg i e
El:derstand and dwelling on information you do not understand. Boldface tex

j j cross anything in the boldface
i all major subject matter. When you come ac _ .
?r::?:;: do noilundersland. then read accompanying lightface for extra information

Chapter 1
THE PARTS THAT MAKE
THE WHOLE

The age of the consumer computer industry is the result of
a new technology which allows tens of thousands of
microscopic electronic circuits to be crowded into a square
space that may be less than 1/8 inch on each side. This
new technology is referred. to as Large Scale Integration

LARGE SCALE
INTEGRATION

LS|

(usually abbreviated to LSI). Here is an LS| device, reproduced in actual size:

Itis now possible to crowd onto a single LS| device, no bigger than the one illustr-
ated above, all of the circuits needed to create the “brain” of a simple computer.
We call this LS| device a microprocessor. The microprocessor is the *“computer”’
within any microcomputer system. Here is an actual size microprocessor:

Now that you know what a microprocessor looks like you can forget about it. Not
until much later in this book will we return to microprocessors. The
““microprocessor’’ becomes a small part of a “"microcomputer™:

Now the microprocessor
chip is part of a microcomputer card

vt it

bl

A microcomputer, in turn, is a small part of a ‘“microcomputer system"’.

When you first look at a *’'microcomputer system’, it will look rnuch lilfe any other
computer system. A typical microcomputer system is illustrated in Figure 1-1.

The microcomputer card sits
inside a microcomputer
“box’*, which is itself just
one component of

the microcomputer
“'system’’. The system

displa:
s !“:1 :v‘i?:” yb H “floppy disk'’ drives and a printer

il

Figure 1-1. A Typical Microcomputer System

l' A microcomputer system, as illustrated in Figure 1-1, is simply a means of getting

a job done. At this most superficial level you need not even know that you are dealing
with a computer —and in many cases that may be your preference. If, for example,
you are using the microcomputer system to handle your office payroll, then the
thing becomes a business machine; it gives you some means of entering payroll infor-
mation. and hopefully it generates accurate paychecks and payroll records. Providing
you receive the output you seek, you do not need to know how the computer works —
any more than you need to know how a jet engine works in order to fly in a commercial
airliner.

Now there is probably no reason why you should ever learn how a jet engine works, If

the person who designed the jet engine were to sit beside you on your next tlight. his

knowledge would not get him to his destination any sooner than you, nor will it do any-

thing to make his commercial air travel any more efficient than yours. But if you do not

know how computers work. you could be sorry. Would you allow your bookkeeper to

i live in a world beyond your comprehension? Would you simply assume the bookkeeper

» will forever be honest? Of course not. So why assume your programmer will forever be
;E honest — if he is never scrutinized. and works in a world only he understands?

And if you are not concerned with computers at work. then look at them in your daily
life. For how long will you go on accepting the excuse, “it is a computer error” ? You will
have no option but to accept this excuse until someone teaches you how computers
work — which is what we will now begin to do.

A MICROCOMPUTER SYSTEM

’ We are going to begin by looking at an entire microcomputer system, examining
what each part of the system does.

THE VIDEO DISPLAY

The most noticeable parts of the microcomputer system illustrated in Figure 1-1
are the human interfaces. You hold a dialog with the microcomputer system in order
to enter data: the microcomputer system talks to you by displaying appropriate
messages on a “'video display’* screen. You respond by typing a reply at a keyboard.
Anything you type in is displayed on the screen to reassure you that you made no
mistakes — and the microcomputer correctly accepted your input.

There is very little difference between a video display and a television set. The
principal difference is that the video display has better “resolution”: that is to say, you
can have smaller characters at the video display. without the display becoming too
fuzzy to read. But providing you are willing to put up with big letters. you can use a

1.3

television set as a video display. This may be illustrated as follows:

The video display
terminal is equivalent
toa TV set

and a keyboard

People on tight budgets frequently use a television set as their video display.

Now one of the problems associated with microcomputers and microcomputer
systems is terminology and language. While a lot of terminology is pure jargon for
its own sake, some terminology is necessary. Remember, English (and for that
matter any other language) evolved in non-technological societies, with the result
that we are often hard pressed to find words, or even phrases, that adequately
represent technical concepts. In this book we will introduce you to computer
terms, if only to make other books understandable.

For starters why are we talking about a “video display” rather than a television screen?
The answer is that a television screen is designed primarily to display pictures. A video
display is designed primarily to display printed words. And there are substantial
differences between the electronics which are best suited to each case. A television
screen is going to display pictures. but not much text. the television screen must
therefore be able to display black. white and grey lor colors and depth of color), but it
does not need high resolution for small characters and fine detail. A video display pri-
marily displays text: it can get by with black and white but no grey lor colprs. but no
depth of color). However. a video display must have very high resolution in order to
represent many small, well formed characters

! 1elevision manufacturers built high quality television tubes. with the resolution de-
manded by video display terminals, then your television set could serve as a computer
video display with no loss of display quality: but that would mean paying more for the
lelevision

A video display is sometimes referred to as a Cathode Ray CRT
Tube (or CRT) or a video display unit (also known as a VDU). VDU
Calling a video display unit a VDU might seem logical enough, but

calling it a "CRT" is somewhat meaningless to the average user.
"CRT" refers to the way in which television and video display tubes are built today;
“cathode rays” are used to create displays. In the not too distant future, cathode rays

will probably be displaced by cheaper and more efficient technologies; but do not ex-
pect terminology to change with technology. Computer scientists are just as human as
everyone else; they will likely refer to video displays as CRTs long after cathode ray
based video displays have found their final resting place in science museums

THE KEYBOARD

Returning to our computer system, let us look at the keyboard. At the present time
you must use a keyboard to create new information for any small computer system. In
the future you will be able to replace a keyboard with a microphone — and talk new in-
formation into your computer.

It yvou simply stand your typewriter next to your micrecomputer and television set, hit-
ting typewriter keys will have no effect on your television display. Someone must build
mé electronics that senses depressed keys and creates appropriate signals, causing the
microcomputer and television to sense that a key has been depressed. This may be il
ustrated as follows:

A typ: iter printer
can replace the
TV set; and the
typewriter keyboard —
is as good as any.

The “interface logic
normally sits inside
the microcomputer

with a cover over it.

“‘_-_-_-_-____""-—-__._
4 nead. l
A R
via which the /

There are innumerable keyboards on the market, and each bases

NTERFACE
its right to exist on special features or capabilities which you may 3

find relevant or ridiculous. You could replace the keyboard with a typewriter, pro-
viding someone builds an appropriate “‘interface’’ for the typewriter.

And what does an interface consist of?

=1y ftertatksto 7
the microcomputer

As you might expect, the keyboard, the video display, in fact, every component of
a microcomputer system must have its own electronics interface to the
microcomputer.

Thus you can replace a keyboard and video display with a television set and typewriter

THE PRINTER

The typewriter offers something that a keyboard does not; the typewriter prints
what you type. In our microcomputer system we show a printer performing this func-
mon:

A separate printer

The typewriter is shown doing the
printer is actual printing job
substituting

fora TV set

VNS TI AT IEND

- 15 0]I IEATD

Ll e

If we substitute a typewriter for the keyboard, we can eliminate the printer. So
why do people buy printers? The answer is for print speed. Typewriters are clumsy
mechanical devices that fall apart if you try to print more than 15 characters per sec-
ond. The slowest printers are twice that fast, while a fast printer can print 600 lines a
minute; a very fast printer will print thousands of lines per minute

Is 16 characters per second not fast enough? Clearly nobody can type that fast: but
remember. the printer is not simply going to print what you type. Consider a payroll
program. The microcomputer is going to calculate pay data, then type out paychecks,
unaided by human hands

After entering all payroll data via the keyboard. you must feed a roll of paychecks into
the typewriter and align the paycheck correctly:

When the.microcomputer has finished computing. it will type out your paychecks while
you take a coffee break — or a nap. At this point you may decide that 15 characters per
second is an agonizingly slow print rate. If you have a payroll of 50 employges‘ the en-
tire microcomputer system is out of commission for 45 minutes while nrmhpg
paychecks. By simply substituting a faster printer, you can significantly reduce pnm
time — and put the microcomputer system to other uses sooner. For example. a printer
that prints 150 characters per second — and that is not unreasonable — will complete
printing paychecks in 4-1/2 minutes

But print speed is nf:t the only reason for separating the printer from the keyboard.
When the two are linked, as they are in a typewriter, every time you hit a key you
will print a character:

That means you cannot use the keyboard while you are printing; and conversely. you
cannot print while you are using the keyboard

Let us uncouple the printer from the keyboard. Conceptually this is what happens:

Here the printer

and keyboard
are linked

Here they are
logically
separated

When the keyboard and printer are mechanically coupled, depressing a key automat-
i ically prints a character:

Alternatively the microcomputer can return the character to the video display:

| When the keyboard and printer are disconnected, the microcomputer must be pro-
grammed to print back the typed character, otherwise it will not be printed:

Or the microcomputer may not return the character at all:

If the microcomputer returns a character, either to the printer

or to the display, it is said to be "echoing” the character.

We have just demonstrated an important concept: the independent control of ap-
parently related devices by the microcomputer. The fact that a keyboard and video
display unit can be packaged as a single entity does not imply that every time you
depress a key an appropriate letter must be displayed. If echo occurs..il is caused by the
microcomputer

The fact that a typewriter physically links its keyboard and typing element means that
every time you press a key the typewriter will print a character, whether you like it or
not. Thus the microcomputer cannot control echo at a typewriter, and that is an un-
desirable characteristic in a microcomputer system component

COMPONENTS THAT STORE A LOT OF INFORMATION

We have referred a number of times to things which the
microcomputer must do. How does the microcomputer do

these things? Defining what a microcomputer must do constitutes ‘‘program-
ming’’. Later on we are going to examine programming conceptually; in Volume |
programming is described in detail. For the moment we are only interested in ex-
amining the individual parts of a microcomputer system; therefore rather than dis-

cussing ““how’’ to write programs, let us consider ‘‘what you will need’’ in order
to write programs.

Every computer program is simply a sequence of numbers. There is nothing special
about these numbers, they are just numbers, pure and simple; thus a number stored
inside a microcomputer may represent a program step, or it may represent ‘‘data’’.
It is all a question of interpretation. If the microcomputer fetches a number when it
needs a program step. then it simply assumes that the fetched number is a program

step. But if the microcomputer expects to receive a number (for example. one of two

numbers being added) then it assumes that the arriving number is “data”

“Data’ is a word used to describe numbers when they are DATA

being interpreted as numbers or letters of the alphabet, in con-

- trast to numbers that are being interpreted as program steps. For example, if you

add two numbers, then the two numbers which you add, plus the answer which you
generate, all constitute “"data”’. The instructions to the microcomputer which cause it to
add the two numbers constitute a program; the program itself consists of a sequence of
numbers, but these numbers do not represent data. they represent program steps. This
may be illustrated as follows:

These numbers tell the
microcomputer to add
A and B; the sum is C

r——-i\'-—-—'-\

2749637185514219376 -s——— These numbers are a Program

/

24+37 =61 - These bers are Data

i

This number is B
This number is A

There is nothing unusual about numbers within a microcomputer representing either
program steps, or data: we all do something similar every day. A number on a piece of
paper might be part of a social security number: it could be a bank check number. the
dollar amount of a check, or the dollar amount of a bill. It is only by inspection and in-

1.12

{erpretation that you can tell which is which. If. while reconciling your bank staterent.
you accidentally read your bank statement number rather than the check amount, you
will get a very weird (and obviously incorrect) bank reconciliation: but there is nothing
inherently impossible about making this mistake. Similarly. you will find that there is
nothing inherently impossible about having a microcomputer read a data number and
interpret it as a program step; but the results will be very strange

Numbers represent just a small part of your world. They are the entire world of
microcomputers. Even a small task. when defined for a microcomputer as a program.
will create many hundreds of numbers. By the time you have defined all of the tasks
that you wanl your microcomputer to perform, all these task defining programs may
become many thousands, or even millions of numbers

This presents a problem

MEMORY

The microcomputer performs any specified task by executing a MICROSECOND

specific program. The program consists of a sequence of steps,

or instructions: each instruction is identified by a unique number. But a microcomputer
can go through hundreds of thousands of program steps. or instructions, within a single
second. In fact. the typical microcomputer will execute a single instruction in some
time interval ranging from 1 millionth of a second to 10 millionths of a second. (We
refer to a millionth of a d as a micro d.) If the microcomputer is to execule
1n instruction every few microseconds. then clearly the number representing the in-
struction must be stored in some type of ready reference. fast. access storage. The
microcomputer must be able to fetch the number representing the instruction in even
less time than the few microseconds available to execute the entire instruction
Typically a microcomputer will fetch an instruction number out of fast access storage in
half a microsecond. or less. This type of ready reference. fast access storage is expen-
sive. The microcomputer will therefore have a relatively small amount of fast ac-
cess storage, which we call memory. This fast access memory is usually buried in-
side the microcomputer box:

_]

Program steps and data which the microcomputer is currently using must be stored in
this fast access memory

FLOPPY DISK UNITS

Programs and data which the microcomputer is not currently using are stored
using some form of slower (and cheaper) bulk storage device. In Figure 1-2 this
bulk storage device is shown as a ‘“floppy disk"’ system:

The microcomputer card sits

inside a microcomputer

“box", which is itself just

one component of

the microcomputer

"system’’. The system

also has a video display

terminal, “floppy disk’ drives and a printer

There are conceptual similarities between a floppy disk system and a record player. The
floppy disk system stores its information on floppy disks, which are so named because
they are soft and bend easily

A -

o & AL

1-16

Because the disks are floppy. they are housed inside stiff cardboard envelopes to keep
them rigid:

There are two sizes of floppy disk: regular ones which"afe
8" in diameter, and “mini floppies’ which are 5-1/4" in
diameter.

MINI FLOPPY

Whereas a record has a grooved surface, the floppy disk has a smooth magnetic sur-
face. On this smooth magnetic surface information is stored as sequences of mag-
netic pulses.

The magnetic pulses are recorded along “'tracks’ on the sur-
face of the floppy disk. In contrast, music is stored on the surface

f a record within a continuous groove. A needle rides the groove in order to position it-
self. But the floppy disk surface is smooth and has no grooves. The track is instead an
imaginary line along which the magnetic pulses lie Information is written onto the
track, and read off it. by a magnetic read/write head that is quite similar to the pick up
irm of a record player. Of course. the read/write head of the floppy disk unit has no nee-

dle since there is no groove to track: instead it has little metallic pads that can create (to
write) or sense (to read) magnetic pulses on the floppy disk surface

Now until you become a real microcomputer expert, you need nc!t concern your-
self with exactly how information is stored on a floppy disk. The dlscu§slnn which
follows will give you a general understanding of concepts, gnd that is all. Mogt
microcomputer users never bother with this information, just as most music
lovers never concern themselves with how music is recorded on ta;_:e, cassettes
or records. You know that a record, when played, creates music; similarly a floppy
disk, when played, creates numbers. You can also write numbers onto a floppy
disk, just as you can record music on a magnetic tape or cassette

g

e i Benn i R R e WL T o e T - KRN R i

It would be feasible to record information on the surface of a floppy disk. much as music
is recorded on the surface of a record. by simply having one continuous groove for. in
this case. one continuous track) spiraling out from the center of the floppy disk surface:

The problem with this recording scheme is that it is very hard to pick your way around
the recorded information. You can prove this for yourself by trying to find a particular
word in a song on a record. I you struggle long enough. you will probably accomplish
the task: but you will do so only by using human judgement. Electronics cannot use
human judgement: it can only follow set rules. We therefore replace the single con-
tinuous spiraling track with a large number of concentric tracks

We can now select one particular track by its track number — which can be addressed
in terms of the exact distance of the track from the edge or center of the lloppy disk:

Track Numbar

CRIST RS TS e TR [

Distance to

¥ 4

Different manufacturers use different numbers of tracks on each floppy disk surface
The only standard that exists is for 8" floppy disks which frequently have 77 concentric
tracks (numbered O through 76) recorded on one surface. Some floppy disks store infor- «
mation on one side of the disk only. while others store information on both sides

You can store approximately 250,000 characters of information on one surface of an 8"
floppy disk. But if you were to simply divide up this information on the basis of track
number, you would have some problems. First of all, tracks increase in length as they
move from the center of the surface towards the circumference — which means that no
two tracks would store the same amount of information. Second of all, the amount of in-
formation stored on one track could be quite large; yet it would represent the smallest

1.17

Figure 1-2. A Floppy Disk’'s Recorded Surface

Ry —

single unit of addressable information on the surface of a floppy disk. If you address the
surface of the floppy disk via track numbers only. then you must read the information
off an entire track. or you must write information to an entire track.

We resolve these two problems by “sectoring” each track. and by

storing the same amount of information on each track. irrespective

of how close the track is to the center or circumierence of the floppy disk surface. As il-
lustrated in Figure 1-2, this means that more of the track is wasted as you move from
the center towards the circumference of the floppy disk. Now you can identify informa-
tion on the surface of the floppy disk by its track number and by the number of the sec-
tor within the track. 26 sectors (numbered 1 through 26) are shown in Figure 1-2; this is
a commonly used number of sectors. Usually 128 characters of information are stored
within each sector of each track; therefore you calculate the total storage capacity of a
single floppy disk surface as follows:

L b N i S
—— — —

——
? *— characters

sectors per track
tracks
characters per sector

Some manufacturers store 256 characters of information on each DOUBLE
sector of a track; these are called “double density” floppy disks. DENSITY
Double density floppy disks use the same sector size as regular FLOPPY
floppy disks. but they cram more information into the same space DISK
Floppy disks will have one or more holes punched in the suriace of HARD

the disk to help the drive mechanism detect sectors. Some floppy SECTORED
disks have a hole punched in between each sector. these are refer- DISK

red to as hard sectored disks and may be illustrated as follows:

SOFT
Soft sectored disks have one punched hole only. This may be il- SECTORED
lustrated as follows: DISK
Sectors

When you buy a “blank” floppy disk its surface is indeed com- FLOPPY
pletely blank; in this form you cannol write onto the floppy disk. DISK

Before writing onto a blank floppy disk you must go through a | FORMATTING
preliminary step referred to as “formatting”. During the formatting ; .
step the tloppy disk drive designales sectors and tracks using appropriate magnetic
codes. This is an automatic process which you accomplish. using your microcomputer
system. simply by following instructions; however you must be aware of the need for
this step. Once you have formatted a blank floppy disk it is ready to be used. You can
write information onto a formatted floppy disk and read the written information back.

Now the beauty of floppy disks is that you can have a collection of thm_-n. just as
you may have a record library. ¥ou can buy a prerecorded floppy disk which comes
complete with programs. or you can buy blank floppy disks and record your own pro-
grams on the floppy disks. then save the recorded floppy disks in your library. Now at
any time you can fetch a floppy disk from your library and run a bought program. or one
you created

RIGID DISK UNITS

Floppy disks are not the only means of storing programs and data. Big computer
systems use large rigid disks:

Large rigid disk systems offer a tremendous variety of options and sizes: but they all
store information on a much bigger disk, which is not floppy:

The “rigid"” disk

disk of smaller
systams. Data
is stored on the
rigid disk.

Rigid disk units store a great deal more information than floppy disk units — but they
are more expensive.

In reality, rigid disks are cheaper if you look at their cost in terms of price per unit of in-
formation stored. But with a small microcomputer system you simply do nol need the
slorage capacity of a large rigid disk unit: moreover. many large rigid disk units transier
information faster than a microcomputer can handle it.

DISK ACCESS

Floppy disk units and fixed disk units are both referred to as RANDOM
“‘random access’’ bulk storage device;, The name "random ac- ACCESS
cess”’ means that you can go directly to any sector of any track in
order to read or write information:

Suppose. for example. you wish to read the contents of track 12. sector 8. the floppy
disk read head can go directly to this sector without first accessing tracks 1 through 11,
and sectors 1 through 7 of track 12

Random access is an extremely useful capability in any bulk storage device. The ability
1o directly access any sector in order 1o read or write will speed up data access opera-
tions. Suppose you had to read sectors sequentially: you would not have much trouble
with the first few sectors:

But it would take a painfully long time to reach one of the last seclors on the surface of
the floppy disk.

Being able to go directly to any sector on the surface of the floppy

SECTOR
disk has another less obvious advantage. What if you have a block

CHAINING

of information that is tao large to fit in a single sector? Suppose,
tor example. your block of information is so big that it must be stored on five sectors.

For example. you could use a microcomputer system to create “form’ letters. You could
store 60 standard paragraphs on the floppy disk. then create a variety of letters by

simply stringing selected paragraphs together. That is how most junk mail form letters

are created. Each paragraph could become a unit of information, which in our example

1s stored on five floppy disk sectors. Now your immediate reaction may be to use fuqe
contiguous sectors: i

Your logical record

Rut since you can access sectors randomly. it makes no ditference whether the five sec-
tors are conliguous. as illustrated above. or whether they are scattered randomly across
the surface of the floppy disk:

. Your logical record

f

When you store a single unit of information on more than one
sector, the sectors are said to be “‘chained”.

LOGICAL AND PHYSICAL RECORDS

This is a good point to introduce you to a very fundamental computer con-
cept: the relationship between ‘‘logical’’ ideas and "'physical’’ reality.

CHAINED
SECTORS

Consider one paragraph that is part of a form letter; this -
paragraph is written on five sectors. Let us refer to this
paragraph as a “record”’.

On the surface of the floppy disk. this record becomes a “physical PHYSICAL
record” consisting of five chained sectors which may or may not RECORD
be contiguous. But why should you worry about sectors? Lite will LOGICAL
become a good deal simpler if you handle information as RECORD
“paragraphs’”, or as you might read the information. You really

want to access information as “logical records”, which (hopefully}

have nothing to do with sectors or tracks. And that is how a well designed floppy disk
unit will let you think. The floppy disk unit takes care of finding sectors and chaining
them together if a record is stored on more than one sector. You do not concern your-
self with how many sectors are required for your record, or where the sectors are. You

do not even have to know that tracks and sectors exist. You deal with the “logical
idea’ of a paragraph and the microcomputer takes care of the *’physical reality” of
sectors and tracks.

- RECORDS AND FILES

Suppose you have a number of form letter paragraphs, each of which is recorded
as a logical record on a floppy disk surface. Consider another alternative: a list of
names and addresses. Each name and address might be stored as a single, logical

Thus, when using a well designed microcomputer system, you can think in terms
of logical records, ignoring sectors, tracks and such complications. But you should
always remember that it is because sectors, tracks and random access exists that the
floppy disk unit is an efficient and fast bulk information handling device.

The concept of the “logical’’ versus the ““physical’’ ‘can be extended to cover

more than information and records.

“Logical units’’ and “'physical units’’ apply in almost every part of any computer

- system. Generally stated a “logical unit” is a piece of information, an idea. or an opera-
tion. as you. a human being, will use it. A “physical unit” is the actual physical implg-
mentation — the physical reality behind the idea. information or function. For example.
in our earlier discussion we saw how a video display could be replaced either by a
television set or by a typewriter printer In this case all three — the video display, the
television set and the typewriter printer — are the reality. physical units representing
the idea of a computer response logical unit,

record. This is how the two sets of logical records might be compared:

Form letter Mailing
paragraphs ligt
Paragraph A — Record 1 — fizeeey Address 1

Paragraph B e Record 2 —— - Add: 2

c g Record 3 — - Address 3

Paragraph D |etl————— Rocord 4 ——— ! Address 4

In order to identify a particular piece of information. you must now know the logical
record number and whether it is one of the form-letter logical records. or one of the
mailing list logical records.

How are you going to identify form letter logical records, as against mailing list
logical records?

Clearly we do not want to start specifying where on the floppy disk the information is
stored; the whole purpose of going to loegical records in the first place was to avoid
worrying about the floppy disk surface. We therefore combine all of the records into a
file. A file is simply a collection of one or more records. Once again you deal with logical
files and leave the microcomputer the task of determining where the physical file ac
tually exists on the floppy disk surface. Now you have a *‘form letter” logical file,
where each paragraph is a logical record, and you have'a ‘'mailing list” logical file,
where each name and address becomes a logical record.

Files and records represent the fundamental structure used to store bulk information in
computer systems —from the smallest microcomputer system to -the largest
mainframe computer system.

This concept of logical files and logical records is not so very different from daily
office life. For example. suppose you need to look at a letter you received from XYZ
Corp.. containing price quotes. You could ask a secretary to fetch the 27th letter in the
third filing cabinet drawer: more likely you would ask your secretary to go to the "XYZ
Corp.” file and retrieve the “price quotes” letter. The "XYZ Corp.” file is the equivalent
of a logical file; each letter in the file is the equivalent of a logical record. Your secretary
is the equivalent of the microcomputer intelligence which is capable of accessing a
specific item of information. given a description of what the information is.

CASSETTE UNITS

If you are a typical microcomputer user, you will find that (at least initially) you
cannot afford a floppy disk system. What are the less expensive options? There
are cassettes and there is paper tape.

The cassette units used to store information for a microcomputer are exactly the
same as the cassette units that you use around the house. You can buy a cassette

recorder at the supermarket and use it to store information for your microcomputer
system

Hopefully you will use a high quality cassette recorder and very high quality cassette
tapes with your microcomputer system. since the microcomputer system is not going to
tolerate errors. If you have a "glitch” in a cassette with music recorded on it, then you
will have a moment of irritation when you play it back, but that is all, It you have a glitch
In a casselte that holds information for your microcomputer, then it may render the en-
lire cassette worthless. since the microcomputer will read a block of no numbers, or er-
roneous numbers.

Now you cannot simply buy a cassette recorder, sit it next to CASSETTE
your microcomputer, and expect the two to converse. The ac- INTERFACE
tual conversation occurs via appropriate control logic within
your microcomputer. This may be illustrated as follows:

There is an interface control card
within this microcomputer

via which data is transferred

to or from a cassette drive

There are Ewu very different ways in which cassette recorders store information
on magnetic tape. T_he old way was to store information digitally, that is to say as a
sequence of magnetized dots on the cassette tape surface:

Magnetic tape

Nearly all industrial cassette recorders store information digitally as illustrated above.
The new cassette recorders that are being sold in computer stores do not record in-
formation digitally; rather they record information as sounds — in exactly the same
way as they would record voices or any other noise. One particular tone representsa 0
digit while another tone represents a 1 digit.

The fact that there is an "old” and a "new” way of recording data on cassettes does not
mean that the "new” way is better, or that it has superseded the “old” way. “Old” and
“new’" refer to chronology. In fact, the "old" way stores a lot more data on cassette
tape, it allows data to be written and read much faster — and it requires much more ex-
pensive tape units. Therefore the “old” way is better. but more expensive than the
“new’” way.

The principal advantage of using tones to record data is that you can use any standard
household cassette recorder. either to record and play back music. or as part of your
microcomputer system.

The floppy ROM is a new innovation which relies on tones FLOPPY
being used to record data on cassettes. The floppy ROM is a ROMS
record which you play on your record player. Rather than listening
to the record, however, you connect a tape cassette to your record player and tape the
information coming off the floppy ROM. The tones recorded on the cassette are in-
terpreted as binary data within your microcomputer system. The binary data may con-
stitute program instructions, data used by a program. or both

ROM are the initials for Read-Only Memory. The record contains information.
therefore it is part of the microcomputer’s “memory”. You can read from the record. but
you cannot write to it: therefore it is a “read-only”" component of the microcomputer's
memaory

The floppy ROM was first introduced commercially by Interface Age Magazine which
uses the floppy ROM as a means of giving its readers computer readable programs in a
magazine. Previously programs had to be printed in a programming language which left
the reader the task of entering the program into his microcomputer — which is a
aborious and error prone operation.

Information is stored on cassette tape as a sequence of physi- CASSETTE
cal records. There is no standard cassette formatting scheme RECORDS

such as the sectors and tracks we described for a floppy disk.
The physical records on a cassette tape may all have the same length or they may have
varigus lengths: also, there are no restrictions placed on physical record length. A
rphysical record may be one character long, or it may be as long as the physical length
of the cassette tape will allow. The logical record we described when discussing floppy
disk sectors and tracks can be recorded on cassette tape as a single physical record:

l Your logical record |

I |

cassatte tape

Or it may be spread over a number of physical records:

s Your logical record |

o V77AV77AV7A A0 3 e

Five cassette physical records

The most important difference between a cassette unit and a floppy disk unit is
that the cassette unit is a sequential (or serial) access device, whereas the floppy
disk unit is a random access device. When we say that a cassette unil is a sequential
device. we mean that you cannot jump around on the surface of the cassette the way
you can on the surface of a floppy disk. If you wish to access the 25th record on a
cassette tape. then you must first count your way past the first 24 records Thus infor-
mation stored far down a cassette may take a long time to reach. For example. it could
take 10 or 15 minutes to reach the last record on a cassette.

If you have more than one record on a cassetie tape. then there | CASSETTE
must be inter-record gaps separating individual records. This may | INTER-RECORD
be illustrated as follows: GAP

W V7AV7A0 A0 3§ ceew

Inter-record gaps

There is no useful information stored in an inter-record gap. As we increase the number
of records on a cassette tape. therefore. we increase the number of inter-record gaps
and we decrease the total amount of useful information which we can store on the

casselte tape. To get the most information on a cassette tape, (hersfore. we would
store that information as one continuous record with no inter-record gaps

Start of Start of record
cassette
tape

End of
cassette tape

End of record

¥ o - et i
A1 the other extreme. I you have numerous vary short records. you will wasle most o

the casselle lape on inter-record gaps:

Inter-record gaps

So why does anyone bother storing lots of short records? The CASSETTE
answaer is to fight errors. Casseltes are not very reliable; it 1s easy TAPE

1o scratch or damage the cassette tape sarface. and the magnetic RELIABILITY
coating on the tape lends to wear off as you use the casselte In REDUNDANT
order to help eliminate errors, well designed microcomputer RECORDING

systems record every piece of information twice ona tte
tape; this is referred to as redundant recording. Now suppose J
vou have just one long record per cassetle tape. this will become two racordsf you use
redundant recording This may be illustrated as lollows

Record Redundant Record

S 7/,

f - -

gioac Koo

You can have one or more errors in one of the two records and still read the record cor-
rectly

///////ﬂl//////////////g-
oy S
V777747770
N
_

Now suppose we break up the one long record into four shorter records. Each of the
four shorter records will have its own redundant record. which means that there will be
eight records on the cassette tape. This may be illustrated as follows

Record Redundant Record Redundant Record Redundant Record Redundant

The two errors which would otherwise render the cassette tape unusable can now be
tolerated. Remember, errors on a cassette tape will occur because the cassette tape is
physically damaged. Thus the two errors will reoccur in exactly the same physical loca-
tions on the cassette tape. This may be illustrated as follows:

—— A —— —
L V77777 V0 mm mmm A

s VA V7474 V27 V77 0774 V74 V22

Record Redundant Record Redundant Record Redundant Record Redundant
1 Record 2 Record 3 Record 4 Record

1 2 3 4
N . i il i el el N —
Read Bypass Error Re-read Read Bypass Read Bypass
Success! Success! Success! Success!
Our cassette tape is now more tolerant of errors simply because we have increased the
number of records.

We can now handle two additional errors before having to throw out the cassette tape.
This may be illustrated as follows:

IWI////IW/I////lWI///AV///IM

In summary, as the number of records on a cassette tape increases, the total
amount of information you can record decreases, but your tolerance of errors goes
up — provided you use redundant recording.

A microcomputer system insures that it has read a record cor- ERROR
rectly by writing a special error detection code on the end of DETECTION
every record. This special code is calculated by applying a for- CODES
mula to all of the numbers in the record. This may be illustrated
as follows:
Record Inter-record
gep

I%

When the microcomputer system reads back a record, it calculates a new error detec-
tion code, this time based on the numbers it reads back. Then it reads back the aold error

detection code. If the record has been read back correctly, the new and old error detec-
tion codes will be identical:

S 7N

\——Tﬁ—/

Read record Read old code
and compute new code = old code
new code

If any numbers have been read back incorrectly, then the new code will not be the same
as the old code: the information is therefore assumed to be incorrect.

The fact that information on cassettes must be accessed se- CASSETTE
quentially makes it very difficult to read and write on the READING
same cassette. Suppose. for example, you are storing a list of AND

names and addresses on a cassette tape. This may be illustrated as WRITING
follows:

Now suppose you want to change the third name and address (3). This might seem to
be a simple enough job: you simply write the new name and address over the old one:

:jj. l=llsmﬂ\?

gut wait a minute. This could become a very tricky operation. Suppose the new name
and address is longer than the old one: you will now wipe out part of the next name and
address:

This piece of 4 has been erased

-
r |-‘T--"“-—.
1 1 s

;l) ll 2 I‘gh "mor,\

We can get around this problem by reserving the same amount of space for every name
and address, irrespective of the number of characters actually in the name and address.
Fxcess characters will be left blank. This may be illustrated as follows:

Name and address

Unused tail-end
of record

Even this is not an adequate solution, since it demands that your cassette drive
mechanism be very precise. Suppose you start rewriting a very small distance too late:

Old address 3 started here Mew address 3 starts here

——

A

This will look ke a very short
record, or like part of address 3

When the microcomputer system reads Address 3 off the cassette, it will plc?(up the
"emnant of the old name and address — and get a read error. If you start writing too
arly, then you have a glitch at the end of the record: and again you will obtain an error
When you read back.

Clearly, writing over previous records is just asking for trouble. Cheap cassetle recor-
ders will give you more trouble than expensive cassette recorders because lhle chea_p
Cassette recorders have less precise drive mechanisms. But the real problem is that it
only takes one error to mess up the whole cassette. It really does not matter whether

this one error accurs frequently or occasionally: in either case it renders the cassette
Useless,

AN PR SN eyt L D

If you have long records and short records all mixed up on one cassette. then reading
and writing on the same cassette becomes a hopeless task. If each logical record is
stored on the cassette tape as a single physical record. then clearly you cannot write
different length records into the same space. A longer record will wipe out part of the
next record:

7 W% |77

2 New Part of 3
while a shorter record will leave part of the old record waiting to be picked up as an er-
ror:

-WIIWIW-
Dizzz2iA %77z A VA 777777

1 2 3 4

V774 %7774 V7774 %7771 !
-
V7774 W77 V770 V) V77777

1 2 3 New Part of 4

3 old

If logical records of various lengths are stored on the cassette tape as a sequence of
equal length physical records. you could write and read on the same cassette by break-
ing up the logical record as we did on the floppy disk. This may be illustrated as follows:

VAV AVAVAVAVAVAVA

1 2 3 4 5

Beginning with this cassette tape, here are two alternative ways of inserting a new
record 3:

Altermative A

CAVAVAVAVAVAVAY

..... AVAVAVAVA.
Rest of

new 3

Alternatrve B

 VAVAVAVAVAVAVAY
“dummy” 4 5

The problem with these schemes is that you will grow old watching the cassette wind
.nd rewind. If you have alternative A, here are the steps that would be needed to read

pack the record illustrated above

Find logical record 2
92) Find start of Yogical record 3
3) Wind cassette forward to find the rest of logical record 3
4} Rewind to start of logical record 4

If yvou use alternative B, you will end up wasting a lot of cassette space. Also, if your
records are in some kind of order (e.g.. alphabetical), they will soon be in total disorder

We must conclude that having just one cassette unit in your microcomputer
system can be very dangerous. You must have at least two cassette units, one to
read from and the other to write to.

PAPER TAPE UNITS

There is a bulk storage device that is even more primitive than cassettes; it is
paper tape. There was a time when paper tape represented the only low cost
means of storing computer information, but today cassettes are about as inexpen-
sive, and a good deal faster. There are, nevertheless, many microcomputer
systems that use paper tape to store information; therefore this is a subject which
we must discuss.

Paper tape. as its name would imply, consists of a long thin paper tape

PAPER TAPE

Information is stored on paper tape by punching holes
CHARACTERS

across the paper tape:

00000 00000000 00000000 GOOGOROGOGPS
L L] L] L]
000000000 OOORNO0 OOOPOOSOIOODOOOIORIOSS

LA U I I I B B

000000 CO0000000 GO0POCOOOOOOGOOSS

000000 0000000000000 C00CFCCQROOOROOOYS
L L]

Every row of vertical holes on the paper tape represents one character.

PAPER TAPE
SPROCKET

In addition to the holes which represent characters. most
paper tapes have a line of small sprocket feed holes

punched approximately down the center, as illustrated above. FEED

these holes are used to move the paper tape

k

A “'sprocket’’ wheel
moves paper tape
using the row of
small holes down
the middle of the
paper tape

There are eight positions on each vertical line where a hole may PAPER
pe punched or not punched TAPE
CHANNELS

L 1]
o000 OOROGOO o0

14 1144

The eight hole positions are called channels.

The combination of punched and unpunched positions constitutes a code. which in
some fixed fashion identifies a character. When we talk about “characters” we are
referring 1o any letter of the alphabet. any numeric digit, or any special character such
as a period. a comma. an exclamation mark. a question mark, etc

We will discuss character codes later on, in Chapter 4

re are ten rows of holes punched per inch of paper tape. Thus one inch of paper
tape will record ten characters of information. For example the name

Joe Bitburger

require 1-3/10 inch of paper tape if recorded exactly as illustrated above. This may
lustrated as follows:

e00 GO0OOOBONTS
L

LR L]
&8 " 80 088 88 S 4N S0 e E e
o0
L L
o0

C O B B B B BN BN BN B B N N

The principal disadvantage of paper tape is that you will need enormous quantities
of it. Aithough cassette storage densities vary greatly. you will use approximately 2000
feet of paper tape to record the same amount of information as a single 90 minute
Casselte. or one side of a single density floppy disk

A further disadvantage of paper tape is that it takes a long time, relatively speak-
ing,either to record information on paper tape, or to read it back. Read and write
times will typically vary between 10 and 100 characters per second. While this may
seem fto be quite fast. cassettes can be written to and read from at between 100 1o
1000 characters per second; typical floppy disk read and write rates range between
1000 and 10.000 characters per second. You can read and write using rigid disks, at
rates in excess of one million characters per second

Regarding time, you must understand the totally different frames of reference that
apply once you start working with computers. Why is 10 characters per second con-
sidered slow? The reason is that you will usually read or write hundreds or thousands of
characters at a time; and more often than not you will have nothing to do but watch
while the read or write operation occurs. Even ten seconds is a long time to wait and
watch if you find yourself doing it repeated]y.

Chapter 2
USE A MICROCOMPUTER AND
WATCH IT GROW

Let us now look at the many ways in which you can use a microcomputer system.

In order to help us in this task, meet Joe Bitburger, an intrepid computer “hob-
byist”’. Having worked occasionally with computers, one day Joe is seized by a fit
of irrationality, during which he buys a microcomputer at his local computer store.

Joe's act is not unusual: it is also not very reasonable. Joe has a great deal to learn.

When | say that Joe works occasionally with computers. what | mean is that in the
Course of his job he occasionally writes computer programs using a computer language
Called FORTRAN. Every morning Joe dutifully takes a deck of card_s {that is compgter
Cards, not playing cards) to the computer center at his offrcel. All being well. some time
Shortly after lunch he stops back at the computer center to pick up a large wad of paper
On which his results are printed.

Perhaps one of the things that guided Joe into his irrational act was the fact that having
written computer programs for more than two years, he had never been close enough
to a computer to touch it

Joe proudly takes his microcomputer home — to assemble and use.

At this point we must bypass many weeks (or months) of Joe Bitburger's life. You
see. Joe bought a microcomputer kit. As any computer hobbyist will tell you, the pro-
cess of assembling such a kit will cause you many hours of anxiety, during which you
will cast doubt on the parentage of the kit builder and the kit manual writer

Ultimately, after many trips back to the computer store, and many scoldings from the
store owner for poor soldering. reading and other practices, Joe Bitburger gets his
microcomputer to work.

Poor Joe. only the exhilaration of a mighty venture completed keeps him happy. All he
has is a microcomputer box:

CREATING A PROGRAM AND MAKING IT WORK

Having built his microcomputer, Joe wants to do something with it. There is precious
little it can do. Having few choices. Joe decides to write a program that makes a
light run around on the front panel:

Joe writes his program on a piece of paper using a “programming language’” which
he has to learn for the occasion. Then he converts the program into a sequence of num-
bers. Remember, all programs eventually become a sequence of numbers, since that is
the only way the microcomputer can understand a program. Having created this se-
quence of numbers. Joe must load them into the microcomputer's memory. But Joe has
no keyboard. Joe has nothing but his microcomputer. What does he do under the cir-
cumstances?

A MICROCOMPUTER FRONT PANEL

Ihe microcomputer Joe has bought has a front panel with switches and lights. Joe
Iherefore learns how to enter numbers into the microcomputer's memory. by flip-
ping front panel switches in the correct sequence.

Twenty minutes, and a very sore finger later, Joe has finished Eagerly he sets the
microcomputer to run, Guess what? It does not.

So Joe decides to examine the information actually stored in his microcomputer's
memory. To do this Joe again uses the switches and lights on the front panel.
These are the same switches and lights which Joe used to load information into the
microcomputer memory. Conceptually this may be illustrated as follows:

Now the information Joe
enterad comes back out
in these indicator
P lights and Joe is
using the
Switches to
select memory
locations

Joe used these

o000 0ooo0o0o ooooo
switches to

yf)%) A %ﬁc@%y it
P oo

microcomputer’s
_\/ﬁ/

memoary
\ PR

to load information into
the microcomputer, read
the information back, or
perform other operations

Do not try to understand exactly how switches and lights on a FRONT
front panel work; if you do you will unnecessarily confuse your- PANEL

self —and that is all. The front panel illustrated above is like none FUNCTIONS
that appears in any photograph:; for that matter, no two microcom:-

puter front panels are alike and some microcomputers do not even hav? a front panel.
Front panels are used to load information into the microcomputer’s memory. to
axamine the contents of the microcomputer’s memory and to control microcom-
puter operations in general.

In order to examine microcomputer memory contents Joe simply reads his rn_anuaI
and follows step-by-step instructions. That is what you would do. when and if you
found yourself in Joe's predicament.

What does Joe find?

Two switches that should have been on are off, and one switch that should have
been off is on.

Not to be daunted. Joe fixes the erroneous switch settings and tries again.
Guess what? Again the program does not work.

So once again Joe goes about the laborious process of checking what was in the
microcomputer's memory. Everything is exactly as it should be. But the program does
not work; why?

The number sequence representing the program must itself be incorrect. So Joe
goes back to his program: upon checking it over carefully he discovers that there are in-
deed mistakes

PROGRAM
DEBUGGING

What Joe has done is called “‘debugging’’ a program. The in-
dividual errors are called program ‘‘bugs”’.

This sequence of correcting errors in switch settings. and then e

finding more errors in the program. may occur many times. In fa:::t. '.t is two da\!s
before Joe finally gets his program to run. Triumphantly he suts’m front of his
microcomputer — watching a light chase around and around the display.

e

What an anticlimax.

Joe has spent hundreds of dollars and hours, just to watch a light running around a dis-
Play? This is indeed a far cry from the great things that happen at work between the

time Joe leaves his program card deck at the computer center, and the time he gets

back a stack of printed results
Clearly Joe must get some eyes and ears for his microcomputer.

Joe borrows a Teletype terminal from a friend.

THE TELETYPE TERMINAL

Now the Teletype terminal is a very interesting device. It has been around for more than §

twenty years, virtually unaltered; it has received more abuse [physical and verball than

any other piece of computer equipment. and yet there are probably more Teletype ter- i
minals around than any other kind of computer terminal. The reason that Teletype ter-
minals are so popular. and so enduring. is that they give you a little bit of everything
you need to support a computer. and they rarely break down. Take a look at a
Teletype terminal:

|

A Teletype terminal has a keyboard which you can use lo enter information into your
rocomputer memaory

The Teletype terminal has a printer which you can use to print out information. or to
carry on a dialogue with the microcomputer:

The Teletype terminal printer serves the combined functions of the video display
and printer. In Chapter 1 we discussed how a typewriter printer does much the same
thing. But the Teletype printer is not necessarily connected to the Teletype keyboard

the Teletype terminal is under the microcomputer’s control.

When you press a key. a code representing the key you press will o

he transmitted to the microcomputer. which will read the code and store it in memory.
providing an appropriate program is being exgcuted at the time you press the key. If the
program which accepts the key input also prints back 1_he character you type. then the
Teletype terminal appears to respond much as a typewriter wou.ld' Rerne_mber. we refer-
red to this as “echoing”. But if the program which receives the information you enter at
the keyboard does not send back this information to the printer. then no printback or
echo occurs. If you wanted to be smart, you could write a program to echo back a
character other than the one you enter. You could, for example. echo back the next let-
ter of the alphabet — B following A, C following B. etc. It all depends on what you have
programmed your microcomputer to do.

You can, if you wish, use a Teletype terminal like a TELETYPE
typewriter — that is to say, disconnected from the microcom- LOCAL MODE
puter. There is a switch at the bottom of the keyboard which,

when in the "local” position, causes the Teletype terminal to operate in this
fashion:

If you press a Teletype key while your microcomputer is executing a program that does
nol expect input from the Teletype terminal, then the data you enter will fall on deaf
ears.

~3

When operating in “local” mode, the Teletype terminal will print a TELETYPE
character every time you type one. But if the Teletype terminal LINE MODE
is in ""line’’ mode:

]

'f the microcomputer is not executing a program that expects input from the Teletype
terminal, then you can press as'many keys as you wish, but nothu?g will h_appen Thein-
formation will be ignored by the microcomputer and nothing will be printed back.

Some Teletype terminals have a paper tape reader:

TELETYPE

o paper tape moves through the reader, the reader detects the presence or ab

As th :
; - of holes in each vertical line and sends an appropriate code to the microcom-
sence *

puter

__,_.—-—-‘__

Use the RUN switch
to manually start
and stop the

paper tape reader

Some programs that use the paper tape reader simply wait for you to start the reader by

switching it on. More complicated programs can switch the paper tape reader on for
you

Some Teletype terminals also have a paper tape punch. There are four buttons

above the paper tape punch:

The "ON" and "OFF" switches. as their names would imply. | TELETYPE PRINTER
wrn the paper tape punch on and off. These are necessary | AND PAPER TAPE
switches at the paper tape punch because the Teletype | PUNCH

terminal considers the printer and the paper tape punch
to be the same physical unit. If the paper tape punch is on. then anything printed will
also be punched on paper tape. Conversely, anything punched on paper 1ape will al-
ways be printed. This being the case. you will leave the paper lape punch off until you
specifically want to punch paper tape: then you will write a program which pur-
posely gives you time to turn the paper tape punch on. Typical program logic may
pe illustrated conceplually as follows:

1

Print message telling opera-
for to tum On paper tape
punch

Y

input a character from the
Teletype keyboard. Do not
echo.

'

The program logic illustrated above causes a message to be printed at the Teletype
printer telling you to turn the paper tape punch on The program then stops until you
press a key — any key — at the Teletype keyboard. Thus you have as much time as you
like to turn the paper tape punch on. The key you press at the keyboard cannot be
echoed since the echoed chatacter would be printed and punched. Punching the
echoed character would create a spurious set of holes in the paper tape preceding the
real information which you want to output

When you have finished punching the paper tape, your program must once again
give you time to turn the paper tape punch off. This time. however. you cannot print
out a message telling the operator to turn the paper tape punch “off”. because any
such message would also be punched on the paper tape The microcomputer system
will therefore simply stop; you must know that you are supposed to turn the paper tape
off. then press any key at the Teletype keyboard in order to continue program execu-

tion,

Why do we bother with all of these elaborate precautions. just to have the paper lape
inch on for some short period of time? The answer is for simple convenience. We are
ly to use the Teletype printer for many purposes —to print results and to print
" alogue during data entry and normal computer operation. If the paper tape punch is
on continuously. you would have to subsequently pick your way through the paper tape

identifying those pieces of paper tape which contain results that you wish to save, and

;hose pieces of paper tape which contain dialogue and junk This may be illustrated as
ollows:

Paper tape with Printed Paper tape with
all output output results only

—— .
el s —

— it —

Shaded

portions of tape
represant unwanted
dislogue

2-14

There are two additional control buttons at the paper tape | TELETYPE
punch. One of these buttons is a Release button (REL); it | PUNCH REL
allows you to slide paper tape in and out when you are thread- | CONTROL
ing paper tape into the punch. The other button is a backspace

i TELETYPE
putton (B.SP); it allows you to move the paper tape backward, PUNCH B.SP
one character position at a time. CONTRO[:

USING A SIMPLE MICROCOMPUTER SYSTEM

Given the luxury of a Teletype terminal, Joe can now make his microcomputer
system do useful things. The first useful thing Joe does is write a program to help
him pay his bills; this is very appropriate since the microcomputer has created more
than its fair share of bills.

Now how in the world is a microcomputer going to help Joe pay his bills? Simple — it
can save Joe from writer's cramp. Joe's program contains a list of names and ad-
dresses for everyone who routinely demands checks from Joe; the phone com
pany. the mortgage company and the cable TV company. to name just a few. Joe cre-
ates his program on paper tape; conceptually this is how the paper tape looks:

S

Address 3 \\ i

\\ Address 9 (G~ ey
a.-.-_‘::

' ’ Address 8

low it does not take Joe very long to figure out that messing around with programs to
control the Teletype terminal is a waste of time. Remember, it requires a program ex-
ecuting in the microcomputer lo accept information you enter at the Teletype keyboard
or paper tape reader, and to optionally echo this information at the printer. When Joe
first connects his teletype to his microcomputer, there are no programs in the
microcomputer to take care of the Teletype terminal. Thus the first thing Joe has
to do is write such programs and enter them into the microcomputer memory by
flipping switches at the front panel.

The problem with this procedure is that whenever Joe switches power off at the
Microcomputer, he also empties everything out of the microcomputer’s memory.
Thus every time Joe turns his microcomputer on, he has to go through the laborious
brocess of entering the Teletype terminal control program via the front panel switches.

Before long Joe ceases to look upon the Teletype terminal control program as a pro-
Qram at all — it becomes a necessary part of his microcomputer system.

Joe goes back to the computer store looking for help. And he gets it.

READ-ONLY MEMORY

Everyone who has a Teletype terminal needs a program to | BOOTSTRAP
Control it. Joe discovers that such a program is available for | LOADER
Sale, loaded into a small memory chip that can never lose its con-

tents. The program is called a "bootstrap loader’’. Joe buys one and this is what he

gets:

The term "b_ootslrap" comes from the concept of a man lifting himself out of a hole by
pulling at his bootstraps. Via the bootstrap program. the computer starts itself

The bootstrap program is stored in a read-only memory chip which, as its name im-
plies, is a memory device whose contents you can read. but into which you can never
write. The contents of a read-only memory chip are fixed forever and can never be
changed.

|n order to understand the difference between read-only memory and read/write
memory, imagine the memory chip as consisting of thousands of switches with a

light above each switch:
7wt . \
5\!’“} (Y 4 \
i3

Cioootopfogon

e ,'xs.'\@\‘ \.‘l‘ﬂ‘

;Sim
memory chip is conceptually equivalent to such swilches and lights. In reality the

yory chip is covered with microscopic electronic structures that look nothing like
ches or lights

A
A
m

When you write into a memory device, what you are doing may be likened to flip-
ping selected switches; a light turns on above each “on"’ switch.

When you read information from a memory device, what you are doing is
equivalent to examining the lights to see which are “‘on’" and which are "off".

Now suppose you write into the memory chip by flipping switches on and off, but
when you are certain that all the switches are in their correct positions, you break
off all the switches. Now the lights which are on will stay on forever. Concep-
tually that is what you have in a read-only memory device.

The advantage of a read-only memory device 1s thal i1 keeps i1ts contents whatever you
do lo it — short of breaking it.

A Read-Only Memory device is frequently called a ROM.

Now when Joe wants to pay his bills, he stacks up the bills
that he must pay, then he loads the bill paying program paper tape into the
Teletype paper tape reader:

Next Joe flips a few switches, carefully following instructions, and the bootstrap
program in Read-Only Memory (ROM) takes over. One by one, instructions from the
boolstrap program rush to the microcomputer. causing it to turn on the paper tape
reader, then read the paper tape. The bootstrap program is no dummy: it is smart
enough to know when it has reached the end of the program at the front of the
paper tape; at that point it turns the paper tape reader off.

Joe’s program has now been read into the microcomputer’s memory:

The bootstrap program, knowing its work is done. relinquishes control to Joe's pro-
gram. Now instructions from Joe's program rush one after the other into the microcom-
puter causing it to do Joe's bidding.

Initially Joe does not want his program to do anything: he wants it to wait while
he feeds a roll of checks into the Teletype printer:

In order to create time during which he can load checks into the | KEYBOARD
Teletype printer, Joe's program has logic much like the logic | ENTRY
which turns the Teletype paper tape punch on and off :ug;l;OUT

The only way Joe's program can know that the checks are in
the printer is for Joe to press some key at the Teletype .
keyboard. He writes his program to wait for Teletype keyboard input, without
echo. Clearly, if he presses a Teletype key and the program echoes back the charactler
the printed character will appear on a check — and will mess it up

Joe adds an enhancement to the program steps which give him time to load
checks into the Teletype printer. Joe's program is designed to check !ho character
Enlered at the keyboard and see if it is the letter A" Only if the letter "A™” 15 entered
Will the program continue: if any other letter is entered the program will simply wait for
Another character to be entered from the Teletype keyboard

Now if Joe accidentally presses any Teletype key. he will not inadvertently restart the
Program. Only pressing the “A” key will restart the program Joe is guarding against
Making silly mistakes when he runs his program.

As soon as the letter “A’’ has been entered at the keyboard, Joe's program turns
the Teletype paper tape reader on in order to read the first name and address,
which you will remember is stored on the paper tape, directly after the program

Joe’s program reads this name and address from the paper tape and stores it as dats in
memory

2.90

Next Joe's program advances the check in the Teletype printer until the ""dollar
amount’’ space is directly behind the printing element. Tl_w program makes the
microcomputer wait for Joe to type in the money to be paid, first as words, then
as numbers:

KEYBOARDS

Let us look at what the microcomputer does every time Joe types a character at
the Teletype keyboard. Remember, so far as the microcomputer is concerned. Joe is a
real slowpoke — in fact he is a regular snail. The fastest rate at which Joe can type is
three characlers per second A typical microcomputer executes an instruction every
five microseconds, which means that it executes 200,000 instructions per sec-
ond.

3 5
5 microseconds 7000000 second
Instructions per second = 1000000 CSCG 0 - 200000
Since Joe can type 3 keystrokes per second,
Instructions per keystroke 2 3 67777

The microcomputer can execute 67,777 instructions, on average, between each
Teletype key depression. Clearly Joe’s program has time to do more than read the
incoming character and echo it back — that requires less than 20 instructions.

ERROR
RECOVERY

Given all of this surplus time. Joe decides to use the keyboard
to help him get out of trouble — because if a mistake can be
made. he will surely make it. Joe also uses the keyboard to con-

trol his program. Upon receiving a character from the keyboard, Joe's program checks
to see if the character is an “Escape” — this is a special key on the Teletype keyboard

JUYUUYYIYYYYLYY
- IGVUUUUUUVUU\,
A AAA LA AL AL S

18 ninlggug?_ \

Upon detecting an ‘‘Escape’, the program advances the RESTARTING

hecks in the teletype printer 1o the beginning of the next
heck: returns the printer to the beginning of the line: then restarts handling the cur-
rent name and address. Thus any time Joe makes a mistake he can simply escape and
start

Jex! Joe's program checks for a “Carriage Return” character. Upon detecting a Ca‘r-
riage Return character, Joe's program reads the name and address which is now in
memory, and prints it on the check:

Address will be taken out of memory
by the microcomputer. The
microcomputer will cause the
address to be typed on the proper
part of the check

In order to help you understand the logic of Joe’s program, PROGRAM
without understanding how Joe wrote the program, look at LOGIC
quure 2 1 which illustrates a program logic flowchart. The | FLOWCHART
\uares. circles and diamonds used in Figure 2-1 are part of a FLOWCHART
standard set of flowchart symbols which everyone uses in the SYMBOLS
» way The complete set of symbols is given in Appendix B

Read next name and
address off paper

tape. Store it in i
memary I

I]
Advance check in |['l
printer to “Amount” i
line L

>I }

Receive next
input at the

keyboard

<

Advance check in
printer to “Pay to”
line

Y

Print name and ad-
dress which is cur-
rently in memaory

Is it an
Escape
:]

Is there

another name

and address
?

Echo the character at
the printer

e]

If you step back and look at Joe's program, it consists of a sequence of major
steps — where one name and address is read. and one check 1s printed during each
major step. And this is what happens during a major step:

1)
2)
3

4)

Figure 2-1. A Flowchart For Joe's Bill Paying Program

The microcomputer positions the check for Joe to type in the dollar amount

Joe types in the dollar amount

Joe types a carriage return 1o end the dollar amount. The migrocomputer automat
ically executes a carriage return, then types the payee's name and address

The microcomputer reads the next name and address from the paper tape. and i
advances the roll of checks to the “dollar amount™ line of the nex! chec

If Joe ever makes a mistake, he presses the Escape key: that allows him to restart the

current check — that i1s. the one within which he made the mistake

How does Joe's program know when there are no more names and addresses?

Joe's paper tape reading program also checks incoming characters. Joe selects a
row of 8 holes as a special ""end of data’’ character. Upon detecting a row of 8

holes the program assumes that all names and addresses have been read;
therefore the program stops:

At this point Joe has a set of checks which he can sign and slip-into envelopes with
windows. There are no names and addresses Lo write on the front of the envelope and
Joe has saved a lot of time

SOME MICROCOMPUTER APPLICATIONS

Joe's bill paying program is just one simple example of the way you could use a
microcomputer system; but it does demonstrate the manner in which the various
parts of a microcomputer system interact as a program executes.

In fact, until Joe has a very large number of bills to pay. it will probably be faster to pay
them by hand. Programming the microcompuler to do this job will not save any time.
We have used the bill paying program as an example not to show you why a microcom-
puter system is an economical thing to buy. but rather to show you how a microcom-
uter system is made to work. But even though Joe. who may pay 10 or 15 bills a
month. could not possibly justify paying these bills by computer, the same program Joe
vrote could handle hundreds of bills as easily as it handled his 10 or 15. With hundreds
ills to pay. the microcomputer system would save a lot of time as compared to doing
the same job by hand.

But there is an even more important point worth noting: by simply changing the paper
tape, Joe can make his entire microcompuler system do a totally different job. Thus if
the microcomputer system is not economical to do one job, it may be economical to do
ten. Suppose, for example. that Joe has spent $1,000.00 on his microcomputer system.
$1.000.00 plus one program on paper lape generates a microcompuler system that
costs a $1,000.00 for one job but suppose Joe has ten different programs, each with its
own paper tape. By spreading the $1.000 00 over all ten jobs he could argue that he is
only spending $100.00 per program. As Joe finds more and more uses for his
microcomputer system. the effective cost per use steadily goes down. And this 15 what
makes microcomputer systems so popular; they will do anything you can define via a
gram. The only limitation placed on the number of programs you write I1s the time 1t
es your microcomputer system to execute all of them.

Joe has many other applications in mind for his microcomputer system. In addition
lo paying his bills, it can keep his address book updated and balance his checkbook —
Ust to mention a few business type programs

2-25

There are also many non-business type things that the microcomputer can do: for ex-
ample. it can play games. A microcomputer system can be used to play simple games
like those you hook on to your television set. or it can be programmed to play complex
games like chess. Joe plans to invent brand new games '

Bu.I in the back of Joe's mind there is an even more interesting application for his
microcomputer — synthesizing music. You can drive speakers directly from a
microcomputer. thus you can write programs which create sound. That is something
Joe is very interested in trying once he understands his microcomputer a little better

2-26

Chapter 3
MICROCOMPUTER SYSTEM
COMPONENTS — WHAT YOU SEE
IS NOT ALWAYS WHAT YOU GET

One day an unfortunate thing happens to Joe: his friend wants the Teletype ter-
minal returned.

Going back to a microcomputer with no eyes or ears is out of the question. Not only is
the cost of the microcomputer a high price to pay. just to watch lights flash on and off.
but Joe has now invested much time writing useful programs. So Joe tightens his belt.
grabs his checkbook and goes back to the computer store.

Joe wants to expand his microcomputer system.

The options facing Joe are mind boggling: and they will probably boggle your mind
100 — until you understand exactly what it is you are looking at. Then a little order will
begin to appear out of the chaos.

When putting together a microcomputer system, you must first select the func-
tions you would like your microcomputer to perform; receiving data input, printing
results and storing information — these are all ““functions’’. Next you must select
the physical unit you want (or can afford) in order to support each function you
have selected. For example, you can store information on paper tape, cassettes or
floppy disks. Each time you select a particular physical unit, you must decide on
the options and additional features you are prepared to pay more for.

We are now going to identify the components you can buy for your microcomputer
system, the functions they serve within a microcomputer system, and the options
commonly offered.

We will begin by looking at the functions performed and the physical components
that you can buy in order to perform each function.

PHYSICAL AND LOGICAL UNITS IN
MICROCOMPUTER SYSTEMS

I you refer back to Chapter 1, in Figure 1-1 you will see the following components
illustrated:

1} The microcomputer iself

2) A keyboard

3l A video display

4) A printer

5 Bulk storage

Do you remember how, in Chapter 1, we described records and files as either
“physical” or “’logical’’? The “'physical’ record or file is the form in which infor-

341

mation is actually stored by a bulk storage device, whereas a “‘logical’’ record or
file is the way in which you as a microcomputer user visualize and use the stored
information. We can extend this concept a step further by taking the five compo-
nents of a microcomputer system illustrated in Figure 1-1, and looking at the func-
tions they perform.

The keyboard becomes an “‘Information Entry’’ logical unit; INFORMATION
the information entry logical unit does not have to be a ENTRY LOGICAL
keyboard: it could be microcomputer console switches, or any UNIT

other piece of hardware capable of reading information —

even a paper tape reader.

The video display becomes an “Operator Message’' logical OPERATOR
unit; it could be a video display. a teletype printer, a typewriter MESSAGE
printer or any piece of hardware capable of delivering messages in LOGICAL

a human readable form. UNIT

The printer becomes a *'Results Output’’ logical unit. We have RESULTS
seen how results are generated by a typewriter, a Teletype printer OUTPUT

or a stand alone printer: there are many other ways in which you LOGICAL
may want to generate your results. For example, you could write UNIT
results on cassette tape. with the idea of printing the results later.

when the microcomputer system would otherwise be idle.

So far we have seen three implementations for a “’bulk In- BULK
formation Storage’* logical unit: floppy disk units, cassette INFORMATION
tape units and paper tape units. We also examined rigid disk STORAGE

units as an alternative to floppy disk units. LOGICAL

A bulk information storage device is not always treated as UNIT

a single logical unit. Sometimes individual files may

become individual logical units, or a group of logical files could constitute a logical
unit. Thus one physical unit may become many logical units. On the other hand. more
than one physical unit may constitute a single logical unit. Any physical/logical unit
relationship that is feasible is also possible. This may be illustrated as follows:

Floppy disk unit "L = “logical unit”
with five physical files
recorded on it,

and various numbers
of records in each file

five logical files

User C treats
each individual
file as a
separate logical
unit

3-2

A® User A treats 8
COE X
SR

User B treats the floppy
disk unit 8s two bulk
information storage
logical units: one contains
3 logical files, the other
contains 2 logical files

User D has two
fioppy disk units.

This one is part of a
single bulk information
storage logical unit.

DoDoooooao E
PREEPRPPPY i
PPy
Cnmeutor Information
%I": Emrvu'i-;w

Figure 3-1. Logical Units Surrounding A Microcomputer

Only the microcomputer itself has no substitute. In this one instance, therefore,
the physical and logical units must always be one and the same thing.

Let us look at some illustrations that more clearly define the relationships bet-
ween physical and logical units.

First of all, Figure 3-1 illustrates the four logical units surrounding the microcomputer
n Figure 3-2 these four logical units are shown superimposed on the microcomputer
system configuration which we initially introduced in Chapter 1. Figure 1-1. Figure 3-3
illustrates how logical units and physical units are related in Joe Bitburger's very simple
microcomputer system, consisting of the microcompuler and a Teletype terminal

While the concept of logical and physical units may appear abstruse, in reality we
can find many parallels in our daily lives.

3-3

Figure 3-2. Logical Units Identified For The Microcomputer System Of Figure 1-1

Operator message
logical unit

Figure 3-3. Logical Units Identified For A Teletype Terminal

3-4

Joe Bitburger requires a "wake up” logical unit in the morning. or he will not get out of
bed in time. so an “alarm clock™ physical unit implements the “wake up™ logical umt
One day the alarm clock breaks down. Fortunately the season of the year is such that
the alarm clock has been ringing just as the sun rises. So Joe leaves his curtains open
while the alarm clock is being fixed: he uses the rising sun through his open window as
the physical unit implementing his wake up logica!l unit. Now had Joe programmed
himself (badly! to respond to a ringing noise in the morning. the switch to light coming
through the window would not work. But Joe pragrammed himself intelligently. to anti-
cipate any type of wake up stimulus; therefore he has very little trouble switching from
the ring of an alarm clock to sun coming through an open window as his wake up
stimulus.

Joe usually has a cup of coffee for breakfast In order to make a cup of coffee Joe needs
a "water heater” logical unit. The “water heater” logical unit may be a “kettle” physical
unit; but when the kettle springs a leak, Joe substitutes with a “saucepan” physical

unit

After breakfast Joe has to cope with the “transportation to work™ logical unit. Normally
a “"bus” is the physical unit which implements Joe's “transportation to work™ logical
unit. One day the bus drivers go out on strike. so Joe rides his bicycle to work. The
bicycle” now becomes the physical unit implementing the “transportation to work’™
gical unit. Had Joe programmed himself to live by an exact bus schedule, he would
now have a problem. But Joe programmed himself to consider various means of getting
o work: he allowed suificient time for a missed or late bus, so0 now he has sufficient
time for his bicycle.

These are just three examples of logical and physical unit analogies that we may en-
counter in our daily lives

MICROCOMPUTER HARDWARE COMPONENTS

Now let us examine some of the physical unit combinations which you will find
when you go down to yout local computer store.

You will see keyboard/video display combinations:

This combination is so common that many people think the two must go together: but
they need not You can buy a wideo display on its own

Or you can use your television set as a wvideo display

You can buy a keyboard on its own

Information entry
logical unit

n-— . Ay

There are keyboard/video display units that include a cassette drive; a casselte drive
can serve as part. or all of your bulk information storage logical unit

Operatar message

Optional information
logical unit

entry logical unit or
bulk information
storage logical unit

Information entry
logical unit

can even buy a keyboard that looks as though it is an integral part of the
Ticrocomputer

Information entry
logical unit

Printers can also be confusing. Sometimes the operator message logical unit and results
output logical unit become the same physical unit

Add a video display and you can use either the typewriter or the printer as the results
output logical unit. while the typewriter or the video display can serve as the operator
message logical unit:

But you can take the same microcomputer system, add a separate printer and now the
results output logical unit and the operator message logical unit. even though they are
both printers, are separate physical units:

Results
Operator message Output
logical unit and Logical Unit
results output
logical unit

There is one very popular series of terminal made by Texas Instruments. the Silent 700:
sne version of this terminal combines keyboard, printer and cassettes. This terminal
nay serve as information entry. operator message. results output and bulk information
storage logical units

Operator message
logical unit and
results output
logical unit

i Bulk information
H] storage logical unit
{

LOGICAL UNIT REASSIGNMENTSI

When using the Texas Instruments .Silent 700 terminal, con- SAVING
sider another interesting possibility; you have results which RESULTS
you wish to print, but you do not need the results at the pre- ON

sent time, or you cannot afford to wait for the printer. There is CASSETTE

an easy solution. Assign one of the cassette drives as the
physical unit corresponding to the results output logical unit:

Bulk information storage
logical unit

logical unit

Results cutput

liogical unit

DEVICE DRIVERS

The beauty of a microcomputer system is its versatility. Once you have the
necessary pieces of hardware, all it takes is one little program in order to use any
physical unit to represent any logical unit that is physically reasonable. For exam-
ple, assigning a printer physical unit as an information entry logical unit is
unreasonable because it is physically impossible. A printer is only able to receive
data, while the information entry logical unit must transmit data.

You can assign any reasonable physical unit to any logical unit by having an ap-
propriate program in your microcomputer system to link the two. These programs
are referred to as “‘device drivers’’. Device driver programs are illustrated func-
tionally in Figure 3-4.

It is worth taking a moment to look at Figure 3-4 since it embodies a number of
ideas and concepts which are difficult to grasp if you are a beginner.

The physical units shown at the bottom of Figure 3-4 are all pieces of hardware which
you can see and touch. Every one of these physical units must have its own device
driver program which caters to the specific needs of the physical unit. A device driver
sgram is simply a computer program — a sequence of numbers, like any other pro-
gram What distinguishes a device driver program from any other program is the logic
of the program — the fact thiat this logic harnesses the physical capabilities of a physi-
-al unit to perform the functions required of a logical unit

Jevice driver programs are not new to you at this point; remember, Joe Bitburger even-
wally went out and bought a device driver program (in a read only memory chipl to
ontrol his teletype

Now your results will be written very quickly lo a cassette. Remove the cassette and
save it until the end of the day. When you reload the cassette. re-assign the
cassette drive as the physical unit corresponding to the bulk information storage

logical unit, and the printer as the results output logical unit:

Bulk information

Operator message storage logical unit

logical unit and

results output Information entry
togical unit logical unit

Your resulls can be printed in your absence

These are
Information Operator Results Bulk Information ideas
Entry Message Output Storage which you
Logical Unit Logical Unit Logical Unit Logical Unit use when
Select
| logic is
part of
your program
Paper Video Flopoy Cassette These are
& eyboa Prin
,.:;, i i & dr t: display disk unit Jetc. » computer
driver kil s driver driver driver programs
1 These are
Floy ical
Paper \iddo POy o physica .
tape | Keyboard Printer Display disk il et units which
reader unit you can
sea and touch

Figure 3-4. Logical Units And Physical Units Connected Using A Device Driver

A logical unit is nothing more than an idea. You can neither see nor touch a logical unit.
For example, in Joe Bitburger's bill paying program, the paper tape reader becomes the
bulk information storage logical unit since the paper tape reader provides Joe Bit-
burger's names and addresses. The concept of stored information, in Joe Bitburger's
case, names and addresses. is an idea. This idea is connected to a physical reality, a
paper tape reader. by the Teletype device driver program

Now suppose Joe Bitburger did a good job of writing his bill paying program. He
would have written his bill paying program looking at all devices beyond the
microcomputer as logical units. Now that Joe has lost his Teletype, suppose he
replaces it with a video display terminal, a keyboard, a stand alone printer and a
pair of cassette drives.

S —

O

mmm——————

Results

Logical Unit

Will Joe Bitburger have to go back and completely rewrite his bill paying program? In-
deed no. All he will have to do is replace the Teletype device driver program with
the video display, keyboard, printer and cassette unit device driver programs;
then by simply linking logical units to physical units in the new. correct fashion. his en-
tire microcomputer system will work just fine. This is illustrated in Figure 3-5.

Teletype
printer device
driver program

Operator

Logical Unit

l“"-""‘I

Information

Entry

Logical Unit

Main bill paying program does not change

driver program

Figure 3-5. Using Device Driver Programs To

Replace Physical Units

3-13

In Figure 3-5. Joe Bitburger's Teletype device driver program has been broken up into
four parts. The four parts are a Teletype keyboard device driver program. a Teletype
printer device driver program. a Teletype paper tape reader device driver program and a
Teletype paper lape punch device driver program. In reality all four parts ol the
Teletype device driver program would be included on a single read-only memory chip.
and the whole package would be treated as a single device driver program. Joe Bit-
burger must remove this read-only memory chip and replace it with four new device
driver programs. The four new device driver programs do not replace the four old ones
on a one for one basis: rather. as illustrated. two new device driver programs replace a
single Teletype printer device driver program, while one cassette unit device driver pro-
gram replaces both the Teletype paper tape reader and the Teletype paper tape punch
device dnver programs

Whereas the four device driver programs for the Teletype looked like one program on a
single read-only memory chip. the four new programs are going to look like three sepa-
rate and distinct programs:

= The video display's keyboard and screen device driver programs
« The printer device driver program
+ The casselte unit device driver program

Each separate program supporis a separate physical unit The separale program may be
available as a read-only memory chip, but all three programs will not normally be
available on a single read-only memory chip. This is because you can buy separate and
distinct physical units in too many different combinations. Suppose. for example, you
have three different video displays (A. B and C). three different printers (P, Q and R). and
three different cassette units (X. Y and Z). You will need 27 different read-only memory
chips to give you all of the combinations of device driver programs that these nine
physical units, in any combination, might require. This may be illustrated as follows:

ROM 1 A+P+X

ROM 2 A+P+Y

ROM 3 A+P+Z)
ROM 4 A+Q+X

ROM 5 A+Q+Y .
ROM 6 A+Q+Z

ROM 25 C+R+X
ROM 26 C+R+Y
ROM 27 C+R+Z

You need to know what device drivers are, but you will probably never need to :

create a device driver. Jus! as Joe bought a read-only memory chip for his teletype
bootstrap (or device driver) programs. so you will simply buy device driver programs as
prewritten packages. Until you are a very experienced microcompuler programmer. you
will never consider wriling your own device driver program

MICROCOMPUTER SYSTEM COMPONENT OPTIONS

In Chapters 1 and 2 we described the necessary functions performed by each
component of a microcomputer system. We did not discuss component options.

You cannot always clearly differentiate between a necessity and an option, but
for better or for worse we are going to assume that information on microcomputer

3.14

system components in Chapters 1 and 2 constitute necessities, whereas what we
are now about to describe constitute options.

VIDEO DISPLAY UNIT OPTIONS
Let us begin by looking at options which you may find in video display units.

Figure 3-6 illustrates the logic of a device driver program to control the most ele-
mentary keyboard and video display terminal. The program in Figure 3-8 does very
little: the program waits for a keystroke from the keyboard. upon detecting a keystroke.
program logic branches in one of three directions:

It displays a displayable character

It responds to a video display control code
« It transmits any microcomputer system control code to the microcomputer

Receive character
Move cursor to
start of next
line on display n
Move cursor up
one line on —1
display
Move cursor down
ona lina on —.1
M control prog
will retum here if more
information must be entered
via the keyboard
=

Figure 3-6. Flowchart For A Simple Video Display Driver Program

3.15

If the keystroke enters a letter of the alphabet, a number or any other displayable
character, the program writes the character back to the video display; remember
this is called "echo”.

The keystroke may constitute a video display control. Controls SCREEN

illustrated in Figure 3-6 include a carriage return. moving up one CURSOR

line or moving down one line. Since there is no print mechanism to
tell you where you are on the display. all displays.use what is called a “cursor”. a cursor
is a small spot. or square of light sitting where the next character will be displayed.

When you press the carriage return key at the video display terminal. the cursor moves
to the beginning of the next line down:

My Jum comments unrﬂml kits vs. assembled boards centinue

-—
B e e e

The two other video display controls illustrated within the logic of Figure 3-6 move the
cursor up one line:

FROM THE FOUNTAINHEAD - SEPTEMBER 1977

Hy June comments regarding kits vs. sssembled boards continue
uch controversy. Bill Geebout of Godbout Electronics
skine that his name be added to the list of suepiiers
who deal only in tested parts. After some discussion Detween
Bill snd me we resched a consensus that there appear to be two
major tyees of company susplving hardvare to hobbrists:

1) There are comsanies such as Godbout Electronics: Newman _
Computer Exchanges E & L instrumentss and for that mattery o3
my own companys Osborne & Asscciatess that existed lone vefo¥e
there was any hobby market.

3-16

Or down one line:

FROM THE FOUNTAINWEAD - SEPTEMBER 1977

My June comments regardind kits vs. assembied Doards continue
to raise much controversy. Bill Gedbout of Godsout Electronics
called asking that his neme be ndded to the list of sveriiers
whe deal only in tested sarts. After some discession between
Bill and me we reached a consensus t there aspear 1o be two
majer tyees of comsany susplying hardware to hobbrisis:

1) There are companies such as Godbout Electronics: Newman
Comouter Exchandes E & L instruments. and for that mattef.g.
my own companys Dsberne & Asscociatess that existed long before
there was any hobby sarket.

As illustrated above, when text is displayed on a screen, you modify it using the cursor.
Wherever the cursor happens to be. that is where the nex! character will be displayed.
You can correct an error anywhere in your text as follows:

FROM THE FOUNTAINHEAD - SEPTEMBER 1977

My June comments regerding kits vs. assembled boards continue
to raise much controversy. Bill Gedoout of Godoout Electronics
called asking that his name be added to the list of suepliers
who deal eniy in tes an between
Bill and me we reached & consensus that there al

major types of comeany suesiying hardware %o Mb stss

4) There are comeanies such as Godbout Electronicss Newman
Computer Exchanges € & L instruments, and for that matter,
my own comeanys Osborne & Associdtes. that existed lon# before
there was any hoboy market.,
.

2) There are comsanies that cane into beins specifically to serve
2%

FROM THE FOUNTAINHEAD - SEPTEMBER 1977

My June comments regarding kils vs. assembied boards continue
to raise much controversy. Bill Godoout of Godbout Electronics
called asking that his me Be added to the Iist of suesilers
who deal oniy in tested sarts. After some discussion between
Bill and me we reached a censensus that there acpear to be two
malor tyoes of company suPRlying hardwars to hotbryists:

1) There are fes such 23 6 1t Etectronicss Newman
Computer Exchanges E & L instruments: and for that matter,
my own comeany. Osborne & Associatess that existed lone Sefore
L, ihere wes any hobby market

2) There are companies that C:l’: inte beine seecifically to serve
Dt

4) Text insertion and deletion. Video displays have a very /mportant advantage as
compared 1o any printer; you can electronically move tlext. Many video displays
take advantage of this and let you insert or delete text. Inserted 1extis illustrated as
follows:

‘A number of video display controls which are not shown in the logic of Figure 3-6
are nevertheless common options. These include:

1) Forward spacing. I you hold down the space bar. the cursor will move towards the
end of the line:

FROM THE FOUNTAINHEAD - SEPTEMBER 1977

My June comments refarding kits vs. assembied boards centinue
to raise much controversy. Bill Gedbout of Godoout Electronics
called asking that his name be added to the Iist of sueeiiers
whe deal only in tested carts. After some discussion belween
Bill and me we reached a3 consensus that there appear to be two
major trees of comepany scuepeirving hardware to hobbrists:

FROM THE FOUNTAINHEAD - SEPTEMBER 1977

My June comments regarding kits vs. assembled boards continue
to raise much controversy. Bill Godbout of Godbout Electronics
king that his name be added to the list of suopiiers
only in tested sarts. After some discussion between
Bill and me we reached a consensus that there appear 1o be two

of » ¥

S{.sseesns swpatzing hasevars (g bochrighes oo o

1) There are companies such as Godbout Electronicss Hevman
Computer Exchanses E & L instruments, and for that matter

mY own comepanys: Osbornme & Associstes. that existed long before
there was any hobby sarket.

11 There are companies such as Gedbout Electronics: Newman
Computer Exchanges E & L instruments. and for that msatter
my own comsanys Osborne & Associatess that existed lone before
there was any hobby market.

2) There are comepanies that came into being seecificaliy %o serve
the hobby marketiZonce it had formed.

Companies that existed before the hobby market tend to Duy only
tested partss because that is what they had to do in order to
serve their orior industrial customer base. “any companies that
were formed specifically to service the hobby market tend tc buy
gntested sarts, leaving &t ue te the kit buver to test the paris
by tryine to use them. .

FROM THE FOUNTAINHEAD - SEPTEMBER 1977

My June comments refarding kits vs. sssembied boards continue
to raise much controversy. Bill Godbout of Godoout Electronics
called asking that his name be added to the list of syeeliers
who deal enly in tested parts. After some discussion between
Bill and me we reached & consensus that there aspear to be two
major tyses of comeany suealving hardware te hobbvists:

Depending on how your video display has been designed. the cursor may stop
when it reaches the end of a line. it may move from the end of the line to the begin-
ning of the same line. or it may move from the end of the line to the beginning of
the next line down f
2) Backward spacing. If you press the backspace key. the cursor simply moves in the
opposite direction from that illustrated for forward spacing.
3) Tabbing. Many video display terminals let you set tabs; after setting tabs, if you _

press a tab key. the cursor jumps to the next tab stop position on the video display
within the current line:

4) There are comsanies such 23 Godbout Electronics: Newman
Computer Exchanges £ & L instruments. and for that matters
my own comeany. Osborne & Associatess that existed lone before
there was any hobby market.

2) There are comeanigs=MAFCTiRe Drtebeine seecifically to serve

the hobby market-ang nc cther marke % once 1t had formed.

S g g #

Comsanies that existed before TRE hobby market! tend to buy only
tested part because that is what they had te do in order 1o
serve the ior industrial customer base. - Many companies that
were forme cifically to service the hooby earket tend to buy
untested eart in# it ue to the kit buver tc test the saris
by trying to use them.

1 consider the discussion of kits vs. assembled boards: and tested

TABLE OF CONTENTS
CHAPTER TITLE PAGE A character entered at a keyboard may identify a control | MICROCOMPUTER

| Memory Access Sesuences 1=1 function that has nothing to do with the video display. Do CONTROL FROM

i T war ooy o = you remember Joe Bitburger's programs always contain an | THE KEYBOARD

s The $ID dnd 80D Siunsts &1 “Escape” or error recovery character? This is a character which :

Ci—— LU N LR 61 restarts a portion of the program, or otherwise allows Joe to get out 9' trouble. Video
terminals will always have one or more such keys. These keys are special because they
do not represent displayable characters or screen controls. Some video display ter-
minals dedicate a few special controls to specific tasks. For example. there may be a key
to disconnect the terminal from the microcomputer. There may be another key to stop
or start the microcomputer once it has been connected to the terminal
If your microcomputer has no front panel. then special control characters entered at a
keyboard substitute for front panel switches. Many microcomputers have no front panel
and use a keyboard instead. If your microcomputer does have a front panel. you will fre-
quently have the option of using a keyboard instead of the front panel switches.

210

Upper and lower case displays are another video display op- UPPER AND
tion. The simplesr and cheapest video display terminals display LOWER CASE
upper case letters only. more expensive video display terminals DISPLAYS

display upper and lower case characters The keyboard will have a
shift key. much as a typewriter does. which allows you to move between upper and
lower case character displays

Some displays allow you to reverse the screen so that black REVERSE
characters are displayed on a white background for part or all of DISPLAY
the screen

Some displays let you scroll text horizontally or vertically. | HORIZONTAL
Horizontal scrolling lets you look at text lines that are longer than | SCROLLING

the screen is wide. Now the screen acts as a window on the line
This may be illustrated as follows

Display screen

C L\

VERTICAL
SCROLLING

Horizontal scrolling is not a common video display option Vertical
scrolling is much more common. In this case you imagine the
text as having more lines than the screen will display: the screen
allows you to move the text up and down. This may be illustrated as follows:

Display

D
sew asssanEa.

Text scrolled
vertically

There are two ways in which terminals provide vertical scrolling and one is very
much better than the other; we will describe both.

The less desirable version of vertical scrolling holds in local read/write memory all
of the text which you can display. This may be illustrated as follows:

This is all of the displayable text.
It is in microcomputer
read/write memory,

If you have this less desirable version of scrolling, you cannot scroll above the top,
or below the bottom of the text currently held in read/write memory. If you insert
text and overflow the available read/write memory, then you will simply lose in-
formation from the top or bottom of your text.

If your microcomputer system has a floppy disk unit, then a well designed scroll-
ing option will connect the floppy disk unit to the read/write memory within
which displayed text is being stored. Now if you scroll above or below the text in
read/write memory, programs within the microcomputer system will automat-
ically store some of the read/write memory text back into the floppy disk and
bring new text from the floppy disk into read/write memory; to you it appears as
though text is being scrolled indefinitely. This may be illustrated as follows

i

—_ e —

displayed
text

\

Endless
scrolling

If you insert text when using this more advanced scrolling technique and you overflow
the available microcomputer read/write memory. then the overflowing text will simply
get written out to the floppy disk and will not be lost

Note that these scrolling options really have nothing to do with the video display
terminal or keyboard; they are options that rely on the entire microcomputer
system and the way in which it has been programmed for you.

Graphic display is another useful option. A graphic video display GRAPHIC
allows you to display pictures in addition to characters Inexpen- DISPLAY
sive graphic display terminals display black and white. but not

grey. they create pictures out of straight lines. circles, dots. solid shapes and block
forms. More expensive graphic display terminals let you display anything a television
screen can, and with finer detail

There are color video displays as well as black and white video displays, jusl as
there are color and black and white television sets A color video display gives you the
added capability of specifying the color in which a character or graphic segment will
appear

Some very expensive video displays allow you to draw on the

') er LIGHT PEN
display with a *“light pen’’. The electronic logic behind the video

display “remembers” the points on the screen which the light pen beam illuminates

KEYBOARD OPTIONS

Let us now look at some keyboard options.

What about the speed at which you enter keystrokes? Is the microcomputer going 1o
have time to process one character before you type another? In the case of the s:rﬁple
keyboard device driver program illustrated in Figure 3-6, the answer is almost certainly
yes. As we discussed earlier. the world's fastest typist enters (on average! nine
keystrokes per second. which gives your microcomputer time to execute more than
20,000 instructions between keystrokes. The program in Figure 3-8 will use 100 or 200
of the 20.000 instructions. and that is all. But nine kcﬁﬁokes per second represents
average keystroke rate for the world's fastest typist. not maximum keystroke rate. Even
though the fastest keyboard operator will enter no more than nine keystrokes per
second, it is quite possible to depress two keys almost simultaneously, providing
you are typing with more than one finger

Two options help you avoid problems in this area: “roilover’’ and "buffers’.

ROLLOVER

First we will describe rollover. What if you type keys so fast
that you enter one key

Then you press another key

3

Then you release the first key:

The instant at which a keystroke is recorded is very important. In any ordinary
typewriter. once you press a key. you type the character corresponding to the
depressed key. If you press a second overlapping key. as illustrated above, an electric
typewriter will lock out the second keystroke and nothing will happen. In a mechanical
typewriter the second printhammer will hit the back of the first printhammer. and the
second character will not be printed

But there is no need to be so restrictive in the world of electronics. While one key IS

depressed. electronic logic can detect another key being depressed. and can “‘remem-
ber” the second key depression until the first key character has been printed This may

be illustrated as follows

g

Key 1 Key 2
has been has been

g

RISl el L il

e that Key 2 h:s
is neaded
s been depressed.
to print Key 1 !
character print Key 2
character

Rollover is a highly desirable option to have in any keyboard. since it has nothing to do
with computer execution speed If you have agile fingers. you might. frequently find
yourself overlapping keystrokes. Unless your keyboard has rollover. it will lose the sec-
and keystroke of the overlap

The next technique used to make keyboards error proof is to
have some storage location within which character codes are
stored while waiting to be transmitted to the microcomputer.
This may be illustrated as follows:

KEYBOARD
BUFFER

(y (3 (3
£ o i e

The storage location illustrated above is referred to as a buffer. Although the buffer
is shown having room to store four characters, a real buffer may have any number of
characters, typically ranging between two and eight. A buffer gives the microcomputer
more time to handle occasional characters that require long response times. Now for
the simple keyboard driver program illustrated in Figure 3-6 a buffer could serve no
possible useful purpose. But as a keyboard driver program becomes more complex. it is
possible for a few keystrokes 1o require more processing time than is available. Now the
buffer comes into play. If the average keystroke requires more than 20,000 instructions
worth of processing. the buffer will fill up and overflow. however large it is. Butiif only
some keystrokes require more than 20.000 instructions worth of processing. then the
buffer will work just fine. This may be illustrated as follows

Keystrokes
input by
operator

Key 1 Key 2 Key 3 Key 4 Key 5 Key 6 Key 7 Key 8 Key 9 Key 10

AT S

T3l 4] TS S Ti0
T2 | l'rg | |
]
- gt { s oo o ©
: (AR T E Uik s
e G L -
@ 11
" DIGR P P | I
through 10. ‘ IH | :; |H
| 1 g |
8. e | B3 L iR
q. K"\'31l§ y key7 [[xeys |
o LTI e L
Kaystrokes
processed

by microcomputer

Let us examine the illustration above. Keystrokes are shown being input at regular time
intervals {at the top of the illustration).

Key 1 is processed very quickly. during time interval T1: the buffer is not needed Key 2.
on the other hand. requires substantial processing time: in fact. before Key 2 process-
ing has been completed. Key 3 has been entered. The buffer must now hold the Key 3
code. As soon as Key 2 processing has been completed. the Key 3 code is taken from
the buffer and processed. The buffer is now empty. But Key 3 processing has been
delayed by Key 2, so Key 4 is entered before Key 3 processing has been completed. The
code representing Key 4 is therefore held in the buffer until Key 3 processing has been
completed.

Key 6 is the next keystroke that requires a lot of processing. In fact. Key 7 and Key 8
have both been entered before Key 6 processing is complete. At this point, two
character codes are being held in the buffer —Key 7 and Key 8. When Key 6 process-
ing is completed, the Key 7 code is taken from the buffer, leaving only the Key 8 code.
Key 7 processing is completed before Key 9 is entered. therefore the buffer is empty.
But Key 8 processing. having itself been delayed. causes the Key 9 code to be stored for
a short period of time.

Had it not been for the buffer, Key 3. Key 7 and Key 8 would all have been missed.

Qur discussion of multiple keystrokes raises an obscure aspect of keyboards
which we must consider: exactly when is a key going to be detected as
depressed? Answering this question is nol quite as simple as it sounds. You might
simply assume that pressing a key causes some type of contact to close. at which point
the key is considered depressed:

Key off

Unfortunately, electrical contacts are not always clean. The simple contact shown
above might more accurately occur as follows:

> g

)

Key finally stable
and “on".
Key off

-

contact
detected

kay looses
contact

The varying pressure of a finger on a key may result in key | DEBOUNCING
contact appearing to flicker on and off for some period of time | KEYS

after a key has been depressed. This is referred to as ‘‘bounc-
ing”. Any keyboard worth having will contain debouncing electronics. A de-
bounced keyboard will convert a ragged key turn on signal into a clean on-to-off
signal. This may be illustrated as follows:

Input to
debouncing op
alectronics -

off

Qutput from
debouncing on
electronics

Rollover, buffers and debouncing are electronic options associated with
keyboards, But it is equally important that you evaluate mechanical aspects of
keyboards.

The normal type of mechanical keyboard has keys which may be illustrated concep-
tually as follows:

Key top

Raturn Spring

Guides

Blollom Plate

If we went into unnecessary detail. we could write a whole book simply on the subject
of well designed mechanical switches. However at our present level of discussion only
the most superficial description of mechanical switches is necessary: and that is what
the illustration above provides.

A mechanical switch will have a spring of some type which returns it to the off position.
You compress the spring by pushing the switch down. At some point. when you have
depressed the switch far enough, an electrical contact is made — at which point the
switch is on

A relatively sturdy mechanical guide must be provided to ensure that when you press a
switch it makes a clean descent to the point of electrical contact. A mechanical switch
may appear to be a very elementary device, but in feality it is not. For example, no one
ever presses a switch straight down: invariably the angle at which your finger touches a
switch causes the switch to be pushed to one side, as well as being pushed down. The
switch must be designed with this in mind Caonsider also the electrical contact; it
might appear that an electrical contact is generated very simply by having metal on the
key lor key stem) make contact with metal on the gunc!e {or bottom plate). But ‘this type
of dry contact. if not designed well. will give you nothing but trouble. Just a small
amount of corrosion on the metal surfaces is sufficient to render the switch ineffective.
Sometimes you can help cheap switches by spraying with a suitable cleaner. But do not
do so indiscriminately. since you might find the cleaner attacks the plastic used to con-
struct the switch.

Mechanical keys also have options. The commonest option is to have an audible or
tactile “‘click” accompany a key being depressed. The microcomputer does not need a
“click™, the human operator does: it is there simply to reassure an operator that the key
has indeed been depressed.

A key may fail if the return spring becomes weak or breaks, or if the key contact
becomes dirty. If a key fails. you would like to be able to fix it Some keyboards are
built as integral units, such that even one key failing requires the whole keyboard
to be replaced. These integral keyboards are cheaper to buy in the first place, but
obviously more expensive to replace if anything goes wrong.

e

In the future, mechanical keyboards may conceivably be
replaced by touch switches. Touch switches consist of glass or
other inert plates upon which patterns are painted using electrical
conducting paints. This may be illustrated as follows:

-/

;’AOA'OA Xt

TOUCH
SWITCHES

Connectors Conductor Switch

i IeI0eelel

Connector Contactors

Normally an electric current is input to one of the contactors: it passes through the
glass 1o the upper conductor. and from there back through the glass to the other con-
tactor and back out via the second connector. This may be illustrated as follows:

Conductor Switch

777777 7777,

""" e

- = = - - ETeee

P]

Contactors

The current output is highly distorted by the glass, but its characteristics are quite
recognizable to appropriate electronic logic. When you put your finger on the switch
your body becomes an addition to the circuit:

A A A A‘A-

Your finger touching the switch dramatically alters the current output: external
electronic logic detects this change in current output and translates it into the switch
being “on”

Touch switches are not commonly seen in appliances or electronic devices, but
they are not new. Touch switches have been used in elevators for years.

Touch switches are not popular at the present time but because they are rugged. low
cost and very reliable they are likely to replace mechanical keyboards in the future. The
real problem with touch switches at the present time is the fact that when you touch
one it makes no audible or tactile click and that upsets many longtime keyboard users.

PRINTER OPTIONS

There are three printer options that contribute most significantly to price: print
mechanism, print line (and paper) width and print speed.

Let us first consider print mechanisms. There are innumera- PRINT
ble ways in which printers can create characters on paper. We MECHANISMS
are only going to discuss print mechanisms commonly seen in
low cost printers
Most low cost printers create characters as a matrix of dots. MATRIX
The simplest matrix printers create characters out of a 5 by 7 dot PRINTERS
matrix:
00000
00000
00000 Each matrix position is a
00000 point at which the printer
00000 can print 8 single dot.
00000
00000
Here are some characters which may be generated out of a 5 x 7 dot matrix:
OeeeO X I X Noj Ceoee® A X N N
®000Ce L NeloloX | 0000 0000
eOO0O0e® | JololeoN J ®0000 ®e000O0
(R XX N o900 90 [oN X N X&) [X X N Xeo]
[NolNeoloX | | NoloNoN oooo0e® 0000
e000e ®e000we O000e 0000
[NeoloNo¥) [N X X Je) (X X KXo o000

The 5 x 7 dot matrix is adequate for upper case letters. numbers and special characters
but it generates odd looking lower case letters. 7 x 9 dot matrices give you better
resolution.

. Dot matrix printers may be impact or non-impact printers. An impact printer, as its
name would imply, makes marks on paper by hitting the paper through an inked
ribbon. A very small hammer is used for this purpose:

Two techniques are commonly used to create dot matrix characters. One technique
uses a vertical line of hammers which sweep across the paper. line by line. creating
characters:

7 Printhammers sweep across the
paper creating a single line of characters.

Another printer has a horizontal row of hammers which shuttle backwards and forwards
creating characters as follows:

‘ Horizontal row of p

OOO»OOOO\)OOOO\J 0000¥0000\)0000¥000

inth shuttle back and forth ’

The advantage of impact printers is that you can make multiple copies of
whatever you print, using carbon paper or pressure sensitive paper, just as you
would with a typewriter. The disadvantage of impact printers is that they are
relatively slow since printing involves moving printhammers and firing them. The
average matrix printer can print anywhere between 30 and 300 characters per second.

There are also a number of non-impact matrix printers which create marks on
paper using a variety of ingenious techniques, none of which involve actually hit-
ting the paper with a hard object. These non-impact matrix printers are very fast
because they do not move mechanical parts in order to print dots: but you cannot use
them to print multiple copies since nothing hits the paper hard enough to effect copies
Some very inexpensive non-impact matrix printers use special heat-sensitive
paper. These printers have a print head which moves across the paper sending out
pulses of heat wherever a dot should be created.

THERMAL
PRINTERS

Printers which use this technique are called thermal printers

- 4

Ink jet printers are the most common non-impact printers INK JET

available today. Believe it or not. an ink jet printer prints by firing PRINTERS
a high speed stream of tiny ink droplets at the paper Each drop of
ink carries a small electric charge The charged ink drop passes through a magnetic
field which dellects it so that it hits the paper at just the right position. This may be il

lustrated as follows

L e

+ —»0
——=0

st

The drops of ink which an ink jet printer fires are tiny and dry almost immediately. Ink
droplets are fired so quickly that an ink jet printer can print thousands of characters per
second

Two manufacturers, Diablo and Qume Corporation, make a DAISY
“*daisy wheel’’ printer. This printer uses a print element which WHEEL
looks like a 96-petaled daisy. There is a character on the end of PRINTER
each petal

COURTESY OF QUME CORPORATION

Daisy wheel printers spin the daisy wheel print element at high speed. while moving it
across the paper. Whenever the correct petal is in front of a character position, a print
hammer is fired, pushing the petal against a ribbon — which prints the character upon
the paper. This may be illustrated as follows

The advantages of daisy wheel printers are that they create very elegant printout
and they are very reliable and relatively inexpensive. Text printed by a daisy wheel
printer is as attractive as that printed by a Selectric or Executive typewriter. that cannot
be said for matrix printers. Daisy wheel printers can work for hundreds of hours without
a mechanical failure. whereas typewriters. when modified to work as printers. con-
tinuously malfunction

The one disadvantage of daisy wheel printers is that they are slow. Typically daisy
wheel printers work at speeds between 30 and 45 characters per second

The reason daisy wheel printers create more attractive text than matrix printers is
because the daisy wheel printers generate solid characters.

Another more expensive way of generating solid characters is BELT

to use a steel belt. A belt printer will rotate the steel belt at high PRINTERS
speed, with ane or more hammers hitting the steel belt whenever

the appropriate character is in front of the correct character position

The most popular belt printer available today is part of the Teletype model 40 terminal

All of the low cost printers available use one of the printing techniques described
above. The lowes! cost printers use impact matrix print techniques. Daisy wheel prin-
ters and belt printers are more expensive

Whatever the printer mechanism, there are some common op- COMMON

tions which you should know about when choosing a printer: PRINTER

1) Print line length. 80-character lines are most common. Some OFTIONS
printers generate 132-character lines. Some low cost printers PRINT LINE
generate lines as short as 20 characters. they use very narrow LENGTH

paper strips.

2] Upper case only or upper and lower case. Inexpensive prin- PRINTER
ters can only print upper case letters of the alphabet. More ex- CHARACTER
pensive printers can print upper case and lower case charac- SET
ters.

3] Number of print heads. Matrix printers and daisy wheel prin- TWO HEAD
ters that sweep across the paper horizontally usually have PRINTERS
higher cost. double speed versions. Double speed versions use REVERSED
two print heads. each of which sweeps across half of the line LINE
Most printers with print heads that sweep across the paper

; ; PRINTING
horizontally increase their print speed by going backwards
and forwards across the paper:
l'-
L]
RIS s s s ek e e -
i Fl
. -
E 5 » - % £
2 T S BT S R T SN i Sk S Sl R
is T TS S SR T T -~ £5
e - }§
#
J‘ ‘_
- -
- - -—-
print head path

In contrast. a typewriter always prints from left to right, performing a carriage
return at the end of every line.

4] Proportional spacing. Currently this option is available PROPORTIONAL
only with daisy wheel printers. Proportionally spaced text SPACING
allows each character a different width. depending on the
shape of the character. Text in this book is proportionally spaced.Here is a line of
text where each character occupies the same width on the page:

(2) The ending location is an address

Here is the same text with proportional spacing

(2) The ending location is an address

5) Right adjusting. If you look at the text in this book, with the exception of this
paragraph. both margins form exactly straight lines. You would expect to start ev-
ery line at the same point on the paper, but most low cost printers will not end ev-
ery line at the same place. “Right adjusting” is the name given to printing text with
lines that begin and end in a straight line

6) Sprocket feed. If you are going to print continuous forms, FRICTION
such as Joe Bitburger's checks. you can quickly run into paper FEED PAPER
positioning problems. Low cost printers advance paper using ADVANCE
friction feed: rollers on both sides of the paper force it to ad-
vance

Even a small amount of shppage in a friction feed, as illustrated above. can eventually
result in paper not being where it should be: successive lines are then printed further
and further away from the desired location. In a check. for example. there is a line
printed on the check where the dollar amount 1S supposed to appear. If every check
slips by 1/20 inch. that is to say. it advances 1/20 inch less than it should. then after
five checks have been printed the dollar amount will appear _'la"ﬂ inch above its assigned
location

NO. 382

!"REH::ZH = 19 77

AMOUNT $ 18Z=. 7S

(DOLLARS
| PR e S — ——
NO. 382
MARCH = rr
19
18% 7S
AMOUNT $

\ DOLLARS

R 5 g s P I Y ey = TR

Before very long the checks will become illegible. Whenever
you are going to use continuous forms on a printer you should
have a-sprocket feed:

SPROCKET
FEED PAPER
ADVANCE

A sprocket feed will advance the paper exactly as far as it should be advanced ev

ary time.

and right hand margins. This may be illustrated as follows

l' { Number of blank lines
I above text
Number Number
of left of right
margin margin

Number of text
g —)

lines

Y

Mumber of blank lines

below text

7) Paper format. Some printers give you mechanical methods of specifying printed
I page format. Printed page format includes such things as the number of printed
lines on each piece of paper. the width of the top and bottom margins plus the left

After evaluating all of the printer options we have described, you must still look at
the ruggedness of the printer. Remember. a printer is a mechanical device and it is
the mechanical devices of your computer system that will usually break down. Il a
printer has not been built ruggedly. it does not matter how many fancy features it offers
you, it will break down. Before buying inexpensive printers, make sure that the printer
manufacturer has not taken cheap short cuts. In particular, watch out for plastic parts in
the printer mechanisms. Plastic is fine for the outer case. but the print mechanisms
should be all metal.

BULK STORAGE UNIT OPTIONS

We have discussed three bulk storage devices — paper tape units, cassette units
and floppy disk units. Rigid disk units are rarely used with microcomputer systems
because they overwhelm a microcomputer, both in terms of data transfer speed
and the amount of information stored.

The only paper tape readers and punches you will see any PAPER
more are low performance, very inexpensive units. This is TAPE
because cassette units are so clearly superior that no one is going UNIT

to pay the same price for a paper tape unit as a cassette unit. Con- OPTIONS
sequently. the options available to you if you want to use paper

tape are quite limited

The Heathkit microcomputer systems use a paper tape punch; it is one of the few op-
tions you have.

There are also some inexpensive mechnical paper tape punches that allow you to
perforate paper tape by hand.

Moving away from these very elementary devices, you will quickly run out of op-
tions, since a Teletype terminal, complete with paper tape reader and punch,
costs $600.00 to $900.00, used. This low Teletype terminal price does not leave
much room for paper tape unit manufacturers to produce anything economically viable.
There is not even much future in trying to build a paper tape unit that people will buy
because it punches and reads paper tape very fast; you can buy cassette drives that are
faster and just as inexpensive. As we explained in Chapter 1. you can use any standard

supermarket cassetle unit together with appropriate interface electronics as a bulk
storage device within a microcomputer system The cassette drive t1self. even if it is
quite good. will cost less than a hundred dollars: cassette drive interface electronics.
already inexpensive, are rapidly going down in price. Thus the market for paper tape
units is very limited.

There is a significant market for cassette drives serving as CASSETTE
bulk storage devices in microcomputer systems. At the pre- UNIT
sent time the least expensive floppy disk unit, together with OPTIONS

interface electronics, costs close to $1000.00. Prices for flop-
py disk units will come down rapidly, particularly as volume grows, but in the
meantime cassette units will be the dominant low cost, bulk storage unit.

When you are choosing a cassette unit for your microcomputer system, there are
two important considerations:

11 Make sure that the cassette drive itself is of good quality. Do not use a cheap
cassette drive since it will give you nothing but headaches.

2) Make sure that the interface logic for your cassette drive stores information in
relatively short records, using redundant recording. We discussed the advan-
tages of this procedure in Chapter 1. You should also be very wary of cassette units
that advertise very high data transfer speeds. As a rule. reliability goes up as data
transfer speed goes down. A slow drive is a reliable drive.

DEVICE
COMPATIBILITY

When you buy a cassette unit for your microcomputer
system, it is worth checking into how many other brands

of cassette units can read the cassettes that your drive
creates, and can write cassettes that your drive will read. This is referred to as
device compatibility.

When you buy a cassette unit for your microcomputer system you will normally be able
to obtain a list of all casselte unit brands that are compatible with yours Compatibility
is a desirable feature since it means you can exchange cassettes with a wider variety of
other users

Floppy disk unit options have (for the most part) been covered FLOPPY
in Chapter 1. You must first decide whether you want a mini- DISK
floppy disk unit or a standard floppy disk unit. Having made UNIT
this decision, you should determine how many floppy disk OPTIONS

units are cr mpatible with the one you buy. Clearly you are bet-

ter off if you can read information that some completely different floppy disk unit wrote
out, and conversely, the different floppy disk unit should be able to read information
that your drive wrote out.

[}

One important option to look into when buying a floppy disk unit is the manner in
which interface logic transfers information between floppy disk and memory.
Some floppy disk unit controllers make all data transfers via the microcomputer:

This is a slow and undesirable way of moving data. Better floppy disk units are
able to move information directly between read/write memory and your floppy
disk, bypassing the microcomputer:

This is the preferable way for a floppy disk controller to work. By accessing memao-
ry directly, the floppy disk interface logic is able to move dala faster, while leaving the
microcomputer free to execute programs while the data transfer is occurring.

You should also examine the way in which a floppy disk drive is constructed.
Remember. the floppy disk drive is @ mechanical, not an electronic unit Not only is a
floppy disk drive a mechanical uriit. it is also a high precision mechanical unit that must

be capable of moving a read head quickly. with a precision of thousandths of an inch,
over the surface of a moving floppy disk. If the floppy disk drive has been built with
cheap plastic parts within its control mechanisms, it will quickly wear out. Since the
floppy disk units are relatively expensive. make absolutely certain that the mechanical
control elements of your floppy disk unit have been built using high quality metal com-
ponents: plastic is OK for the unit housing. but that is all

e

A

Chapter 4
GETTING DOWN TO BASICS

We are now going to look inside a microcomputer and see how it works. This is in-
formation which you may or may not need.

You can buy a microcomputer system and use it as such, writing programs in a
programming language (such as FORTRAN or BASIC); if that is what you plan to
do, then you do not need to know how the microcomputer system works — and
the rest of this book will be of little value to you. Read the first few pages of
Chapter 5, which discusses programming languages, then find a book which
teaches you the programming language in which you plan to work.

But programming a microcomputer system using a language such as FORTRAN or
BASIC is like riding a bus. In order to ride a bus you do not have to know how a bus
works; you do not even have to know how to drive one. However, if you want the
increased flexibility of a private car, you must learn to drive: you may even learn
how your car works in order to fix it yourself. Similarly, if you want to access the
power and capabilities of your microcomputer — rather than accessing the lesser
power and more limited capabilities of a programming language — then you must
learn how the microcomputer works.

If you decide to learn how a microcomputer works, you must still identify the
level of knowledge you seek. You can learn how to program the microcomputer
using a very fundamental, microcomputer-level programming language; you can go
a step further and learn how the microcomputer works in sufficient detail to fix it
if it fails — and to expand or change it if it does not meet your needs.

The rest of this book assumes that you want to learn how microcomputers
work — but we make no assumptions as to whether or not you want to fix and
modify the microcomputer. Still holding to our assumption that you have no com-
puter background, other than what you have picked up reading Chapters 1, 2 and
3, we are going to explain some very fundamental concepts. These explanations
are aimed at bringing you to the point where you can read and understand “'An In-
troduction To- Microcomputers: Volume 1— Basic Concepts’”. Thus, assuming
that you want to do more than program a microcomputer using a higher level
language, you must read the rest of this book, irrespective of what else you plan
to do. Only when you come to subsequent books in the series will you start dis-
criminating between information you need or do not need, depending on your
aspirations.

While describing fundamental concepts in the rest of this book, we will con-
tinuously refer to the microcomputer itself, but not to the physical units surround-
ing the microcomputer. This is appropriate, since ultimately you must learn how to
program a microcomputer. and optionally how to build one. It.will be a long time. if
ever, before you need more information on floppy disks. keyboards, displays and other
physical units, or their interface logic. You will buy the physical unit and its interface
logic as a single unit. and you will program the physical unit from the microcomputer.

NUMBERS AND LOGIC

Every piece of logic within a microcomputer system may be reduced to a network
of switches, each of which is ""on’* or “off"". This is a concept which is not entirely
new to you, since we used it to describe memories. and specifically, read-only memo-
ries But let us look at how a network of switches can ultimately generate the
power and versatility of a computer,

BINARY DATA

Consider numbers. As we have often stated, instructions. programs and data of all kinds
become a sequence of numbers. How are we going to represent so many numbers,
given nothing more than switches that may be on or off?

The digit “0" can be represented by an “off" switch:

@)

“1" can represent an “on” switch:
L

=0

e
—_— —
< -~

®

Now _what? A computer that can only count to 1 will not be very useful. Computers
can, indeed, create just two separate and distinct numeric digits:

Zero 0
One 1
Then what?

But'humans have a very similar problem. We are limited to just ten separate and
distinct numeric digits:

Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Now start combining digits!
Ten 10

Eleven 1

CO~NOOLWN=O

elc.

DECIMAL
NUMBERS

The human number system is referred to as the decimal num-
ber system. The decimal number system appears world-wide,
among totally unrelated tribes and nations — wherever societies
have learned to count. Most probably this is because we all have 10 fingers and first
learned to count on our fingers. There is nothing “unique” or “natural” about the
decimal counting system; in fact. it is a rather clumsy way of doing things. We will see
later that there are much neater ways of counting — where neatness is measured in
terms of making arithmetic easy.

Just as the human counting system has a name — it is the decimal system — so the
computer counting system has a name — it is the binary system.

Let us look at the binary system in detail.

THE BINARY NUMBER SYSTEM

The binary number system has just two separate and distinct digits: 0 and 1. To
represent numbers greater than 1 we follow the example of decimal numbers —
and use more than one digit. Consider the number two; in binary format it is repre-
sented by the digits 10:

DECIMAL

Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Ning
Ten 10

In both the decimal and binary counting systems the two-digit combination 10" repre-
sents a number that is one greater than the largest single-digit number. In the case of
decimal numbers the largest single-digit number is nine: therefore 10 represents one
more than nine, which is ten. In the binary number system the largest single-digit num-
ber is one. therefore 10 represents one more than one. which is two.

The numeric value of the digit combination ''10" is very important. This digit com-
bination has the value ten in the decimal system, which is where the decimal system
gets its name. Similarly, in the binary system, the digit combination “10" has the value
two. which is where the word “binary’ comes from.

BINARY
Zero 0
One 1
Two 10

DO~ EWN =20

These values, ten for the decimal system and two for the bin- NUMBER
ary system, are called the ""base’” for the numeric system. BASE

The base number, that is. the value associated with the digit com-
bination “10", is interpreted for decimal or binary numbers as follows:

10

1 x base + 0

The digits of a two-digit decimal number are referred to as the ONES DIGIT
“ones” digit and the “tens” digit: TENS DIGIT
Tens digit
‘— Ones digit

10

For a two-digit binary number, the digits are referred to as the TWOS DIGIT
“ones” digit and the "twos” digit.

Twos digit
10
To represent three using binary numbers, we can still draw a parallel with our decimal
counting system. The next decimal number after decimal 10 is created by addlng 1

as follows:

Ten + One

Eleven

Tens digit

b—mﬁgﬂ
10 +

-

1xbasa + 1
=10)

Similarly, we advance from two to three using binary numbers by adding 1 to bin-
ary two:

Two + One = Three)

Twos digit

‘—Oﬂﬁsﬁgﬁ
10 +1 =11
1xbase + 1

What happens when we want to create 4 using binary numbers? The parallel with
decimal counting is not so immediately visible. Following decimal 11, we still have a

long way to go before problems arise. We can keep on adding 1 until we reach decimal

nineteen (19):
Nineteen
Tens digit
‘ *—_Onesdigit
19
1xbase + 9
(base = 10)

Then we go to decimal twenty (20):

Nineteen + One = Twenty

r&“ﬁ"—l
=]

2xbase + 0
(base = 10)

It is not until you reach decimal 99 that you have to add a third decimal digit and create
100:

— Tens digit

- TR

99+ 1=

9 xbase + 9
(base = 10)

Now in the binary system, following binary 11 (which is decimal three) we have a prob-
tem. If we add 1 to 11 we cannot get 12, because the digit 2 does not exist in the binary
system. Moreover. we cannot go from 11 to 20, because once again we are using 2,
which is an illegal binary digit. Binary numbers must therefore follow 11 with 100:

Zero 0
One 1
Two 10
Three 1M
Four 100

A -

Let us examine the meaning of three-digit numbers.

When you see the number 234 you automatically interpret it as two hundred and thirty-
four:

Hundreds digit
Tens digit
l +_ Ones digit
3 .;-
(2x100) + (3x100 + (4)

B!.u_ there is a special significance to the "hundreds” digit. just as there is to the “tens”
digit. You can increment the tens digit nine times: on the tenth increment you must in-
crement the hundreds digit. Consider tens digit increments. beginning with the

decimal number three:

3 Three
First increment 1 3 Thirteen
Second increment 2 3 Twenty three
Third increment 3 3 Thirty three
Fourth increment 4 3 Forty three
Fifth increment 5 3 Fifty three
Sixth increment 6 3 Sixty three
Seventh increment 7 3 Seventy three
Eighth increment 8 3 Eighty three
Ninth increment 9 3 Ninety three
Tenth increment!! 1 0 3 One hundred and three

In the case of binary numbers. you can increment the “twos” digit just once: on the
second increment, you must create a “"fours” digit

First increment 1
1
Second increment 1 0

0

1

0

1

0

L Ones digit
Twos digit
Fours digit

Here is the rule: the number of times you can increment a digit is equal to one less than
the number base; then you must increment the next higher digit. Thus in a decimal
number you can increment any digit nine times (0 10 9); then you must increment the
next higher decimal digit. In a binary number. you can increment once (0 to 1) then you
must increment the next higher binary digit Thus digits can be represented as follows:
“Bases x bases” digit

“Bases” digit

Ones digit

.ﬂ

(=]
o

— T -

After incrementing the “Bases” digit (Base - 1)
times, on the (Baselth increment you must
increment the

“Bases x Bases” digit

In the illustration above. P Q and R represent any number system's digits. Substitute 2
or 10 for “base” and the illustration will represent “binary” or “decimal”” numbers.

The second digit of a multidigit becomes a “number base” multiplier within an equa-
tion which tells you the value of the multidigit numbers. Similarly a third digit becomes
a multiplier for the number base multiplied by itself. This may be illustrated as follows:

Interpret the three-digit binary
number as follows: 1x(2x2) + Ox2 + 1 “number base”
T T ‘ = 2 (two)
Here is a binary three-digit number 1 z i
This is any three-digit number P Q R
Here is a decimal threé-digit number 2 3 4
Interpret the three-digit ,_L T
decimal number as follows: 2x(10x10) + 3x10 + 4 “number base”
=10 (ten)
A number multiplied by itself is referred to as the “square” of the SQUARE

number. Thus we can represent any three-digit number by the OF A
following general-purpose equation: NUMBER

“Base squared’ digit
“Bases” digit

{—Onss digit

PxBasexBase + QxBase + R

Each time you multiply Base" by Base you get BaseN* 1. Thus “Base” through “Base6”

’ For “Base x Base” we use the symbol Base2. Thus Base? represents the square of the have the following values:

number represented by "Base”.

g Binary Decimal
i We can extend the same reasoning to larger numbers. TNA Hassl® Fon
AR In decimal arithmetic a fourth digit identifies thousands and is THOUSANDS Four Base?2 One Hundred
L/ e referred to as the “thousands” digit. For example, 2345 represents DIGIT Eight Base3 One Thousand
/g two thousand. three hundred and forty-five. A thousand is CUBE OF Si:fleen Base4 Ten Thousand
1] 10 x 10 x 10. which is the same thing as “number base” x “num- A NUMBER Thirty-two Base® One hundred thousand
{ ber base” x "number base”; this is the “cube” of the number base. Sixty-four ~ Base® One million

i For “Base x Base x Base” we use the symbol Base3. Thus Base3

B In any multidigit number we refer to the ones digit, that is. the | HIGH ORDER
represents the cube of the number represented by “Base”. v - 9

rightmost digit. as the “low order’ digit. The leftmost digit'is | DIGIT

® A four-digit binary number will be interpreted as follows: EIGHTS called the “high order” digit. This may be illustrated as follows: LOW ORDER
i DIGIT DIGIT"

4

b ; igit (8 =23
& Eights dlgu (8 =29) Binary number: P 1 0Y 01O

i Fours digit (4 = 22)

L Twos digi Decimal number: 2374

) Ones digit High Low

'| order order

digit digit

BINARY TO DECIMAL CONVERSION

You can use the general representation of a multidigit number to convert any binary
number to its decimal equivalent.

£ $50 08

‘ Here are some examples of multidigit binary numbers showing how to figure out
8 1xBase3 + OxBase2 + 1xBase + 0

their decimal equivalents:
We can now define multidigit decimal and binary numbers as follows:

o LMNPQRS Fours digit
. * ‘ Twos digit
B ; r()nesdigit
5 - 101 1 S
[
| A
i'
|
i LxBaseb+ MxBase5 + NxBase? + PxBase3 + QxBase? + RxBase + S

—tm,
[4 1x8 + Ox4 + 1x2 + 1
——

—— e
B + 0 + 2 +1 = 11 decimal ~

The general definition above is for a seven-digit number: any other number of digits
£ could be represented by adding digits at the left end of the number.

Thirty-twos digit
Sixteens digit
Eights digit
—————— Fours digit

4 ? F&Tﬂ
'

0

o

‘-"0-“—

e

!x32 +0xlﬁ+ %8 + 1x4 + Ox2 + 1

g g
32+0+ 1 =

B + & '+ 0%
DECIMAL TO BINARY CONVERSION
There is a very simple technique for converting any decimal number to its binary
equivalent; we will simply define this technigue, then we will explain why it
works.
Here is a definition of the technique: to convert a decimal number to its binary
equivalent, repeatedly divide the decimal number by two until nothing is left of the
number. Here are two examples:

45 decimal

Decimal 47 = 101111 binary Decimal 132 = 10000100 binary
Now we will explain why the conversion technique works.

The steps illustrated above create the multidigit binary equivalent of the decimal num-
ber: the least significant (that is. the rightmost) binary digit is created first. This digit is
the remainder once you know how many twos digits there are.

Let us use the symbol NNN to represent any decimal number. What happens when we
divide NNN by 2? We will get half of NNN, plus a remainder of O or 1. Let us use the
symbol PPP to represent half of NNN. In the general case this is how we illustrate NNN
being divided by 2:

2 | NNN

PPP remainder Oor 1

4-10

Here are some specific cases:

421 (NNN = 421)
210 remainder 1 (PPP =210)
2 ' 36 (NNN = 36)
18 remainder 0 (PPP = 18)
2 l 7 (NNN =7)
3 remainder 1 (PPP =3)

In each of the above illustrations the decimal number NNN is shown as having PPP
twos digits, plus 0 or 1:

NNN = PPP x 2 + remainder
2t = 20 x 2 +1

3% = 18 x 2 +0

7 = 3 x 2 +

For any decimal number NNN. in order to discover how many twos digits there are
{PPP), you simply divide the decimal number (NNN) by two. The remainder (0 or 1) is the
ones digit.

What about PPP? It is a decimal number. If by chance PPP is O or 1. then it is also a
valid binary number. any larger number is not a valid binary number. If the number of
twos digits computed in the first step above (PPP) is more than 1, that means there are
some fours digits in the binary number. In order to calculate how many fours digits
there are you could simply divide the initial decimal number by four:

4 | NNN

QQQ remainder 3,2,1
or0

Let us look again at our previoys examples:

NNN = QQQ x 4 + remainder
21 = 1056 x 4 + 1

36 = 9 x 4 +0

7 =) [

4-11

But note that QQQ. the number of fours digits. must be half of PPP, the number of twos
digits; that is to say. dividing NNN by 4 is the same as dividing half of NNN by 2.

2 |NNN

2 | PPP remainder 1 or 0
QQQ remainder 1 or 0

4 | 421 is the same as 2 | 421
105 remainder 1 2 I 210 remainder 1

105 remainder 0
4| 36

4 | NNN is the same as
QQQ remainder 3, 2, 1 or 0

isthesameas 2 | 36

9 remainder 0 2 | 18 remainder 0
9 remainder 0

4 l 7 is the same as
1 remainder 3

LS

7
73 remainder 1
1 remainder 1

The advantage of dividing by two twice. is that all remainders are 0 or 1 — valid binary
digits. Look at those remainders illustrated above: .

1 is the sameas 01 (binary)
0 isthesameas 00 (binary)
3 isthesameas 11 (binary)

Decimal seven (71g) has become binary 1112. That is to say, decimal seven equals one
fours digit. plus one twos digit. plus one ones digit: \

o = Mg + 210 + 1

Decimal numbers 3610 and 42110 must continue to have higher level binary digits cre-
ated since 910 and 1051 are not valid binary digits. Higher level binary digits are cre-
ated by continuing to divide by 2; here is the complete conversion for 36:

2|36
2|18 remainder O (no ones digits)
2 | 9 remainder O (no twos digits)
2 | 4 remainder 1 (one fours digit)
2 [2 remainder O (no eights digits)
1 remainder O (no sixteens digits)

one thirty-twos digit

Thus. 3619 = 3219 + 410 = 1001002 .

In the illustrations above we have introduced a new form of DECIMAL
shorthand which is commonly used in computer books. Decimal NOTATION
numbers are identified by a 10 subscript at the end of the
number: .

Decimal 4713 is represented as 471310
Binary numbers are identified by a 2 subscript at the end of BINARY
the number: NOTATION

Binary 11010 is represented as 110107

4-12

il

Since you are repeatedly dividing the decimal number by 2, the remainder can only be
0 or 1 — and the remainder tells you how many ones digits. twos digits, fours digits,
and so on, there are in the binary equivalent of the decimal number. If QQQ is 2 or
more. then there are more than 0 or 1 fours digits and you divide the fours digits (QQQ)
by 2 to determine how many eights digits there are: the remainder. when you divide the
fours digits (QQQ) by 2, tells you whether there are O or 1 fours digits. If there is more
than one eights digit. then you go on to the sixteens digits: and if there is more than
one sixteens digit you go on to the thirty-twos digits; and so on.

Table 4-1 summarizes all possible four-digit binary numbers and gives their
decimal equivalents.

Looking at Table 4-1, it is easy to see how switches can be used to represent numbers
of any size. A O becomes an “off” switch while a 1 becomes an “on" switch. By simply
increasing the number of switches used to represent a number. you can indefinitely in-
crease the size of the numbers which switches can represent. Table 4-2 shows you
the largest number that you can represent in the binary counting system as you in-
crease the number of digits in the number.

Table 4-1. All Four-Digit Binary Numbers And Their Decimal Representations

Decimal Binary
Numbers Numbers
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 011
8 1000
9 1001
10 1010
1 1011
12 1100
13 1101
14 1110
15 1

413

Table 4-2. The Largest Number That Can Be Represented By Binary
Numbers With 1 Through 16 Digits

Number of Maximum Binary Decimal

Binary Digits Value Equivalent
1 1 1
2 1 3
3 1 7
4 1111 156
5 11111 31
6 111111 63
g 11111 127
8 M 255
9 111111111 511
10 1111111111 1023
1 EEERRRRRRER 2047
12 (RERRREERRRE 4095
13 111111111111 8191
14 1111111111111 16383
16 111111 32767
16 i EEEEGEREERRREEE 66635

Notice that each time you add a new switch {or binary digit) you double the maximum
number size which can be represented.

BITS, NIBBLES AND BYTES

A Blnary digiT is always referred to as a bit. Thus & bit can have BIT
avalue of O or 1

Although numbers can be created from any number of binary
digits. or bits, as illustrated in Table 4-2, there are certain numbers
of bits which you will frequently encounter. Most frequently you will deal with 8-bit
combinations. An 8-bit unit is referred to as a byte. There are a few obscure com-
puters that use the word “byte” to describe some other number of bits (most frequently
6 bits). but in the world of microcomputers. the byte is always an 8-bit unit. Thus a byte

can represent numbers in the range O through 265
NIBBLE

4-bit units are sometimes referred to as nibbles. Thus a byte
consists of two nibbles:

High order bit of byte

hLmarﬂﬂbﬁo‘bﬂo

7 65 4 3 2 1 0 <ag——8it Number
A byte

Low order bits of nibbles
High order bits of nibbles

— — .
High Low
order order
nibble nibble

4-14

16-bit units are sometimes called words. Thus a word consists
of two bytes or four nibbles:

1514131271109 8 7 6 5 4 3 2 1 0 < — Bt Number
HEDNENEEEERNEREEE, it

——
Nibble 3. Nibble 2 Nibble 1 Nibble 0

High order Low order
byte byte

BINARY ARITHMETIC

Le_t us look at parallels between arithmetic using. binary numbers and arithmetic
using decimal numbers.

BINARY ADDITION

When you perform decimal addition, you align the digits of the two numbers being
added as follows:

Hundreds digits

Tens digits

Ones digits

13

v

47

.,_T\

You do essentially the same thing for binary addition:

One hundred and twenty-gights digits
Sixty-fours digits

Thirty-twos digits

Sixteens digits

Eights digits

Fours digits

Twos digits

Ones digits

:ﬂj

W

10010011
00101111

4

16

You add the numbers, one digit at a time, starting with the low order (ones) digit.
But binary addition is beautifully simple. as compared to decimal addition. When you
add two binary digits there are just four possibilities:

'1-'-—0811'\-'1
0

+ i
1

+
oloo

Pty
#8.%k
§Asg

When you have two decimal digits, you have 100 possibilities. 45 of which will gener-
ate a carry.

Let us look at a few examples of binary addition, first the very simple 2+2=4. Using
binary numbers, this is what you get:

Decimal Binary Decimal Binary
0 000 2 010
1 001 + 2 + 010
2 010
3 on =4 =100
4 100

Here is a digit-by-digit explanation of the binary addition:
1) The ones digits are both 0; adding them creates 0 and no Carry:

Twos digits

4-16

3} The fours digits are both 0, but there is a Carry from the twos digits. The two zeros
create 0, but adding 1 (the Carry) to O creates 1. with no Carry:

Fours m

Now let us look at a slightly more complex example of binary addition: 7+5=12. This
may be illustrated as follows:

Decimal Binary
7 m

+5 + 101

=12 = 1100

The ones digits are both 1: they sum to 0 and create a Carry:

The twos digits are 1 and O: there is also a Carry from the ones digit. This is equivalent
to adding the three bits: 1. 1"and 0, which creates 0 and a Carry:

Twos digits

417

The fours digits are both 1, but there 15 also a Carry from the twos digits. Adding three 1
bits is simple enough if you do it in two steps. First add two 1 bits:

1
1

0
This creates 0 and a Carry. Now add the third 1 bit to the result:

10
1

"

You have 1 with a Carry
The eights digits are both 0, but there is a Carry. The eights digits therefore sum to 1:

Eights digits

The addition of 132 and 47, which we illustrated earlier when describing
microcomputer logic, in binary becomes:

Decimal Binary
132 10000100
+ 47 00101111
=179 10110011

The decimal to binary conversions for 132 and 47 have already been described. We can
check that the binary sum is indeed equivalent to decimal 179 as follows:

10110011

e

1 X 1 = 1
- ;] x 2 = 2
0. % 4 = 0
O =% 8 = 0
ey K 16 = 16
1 .x Seu = 32
0 XCTIORES 0
10 x2S = 128
179
1R

If you do not understand binary addition at this point, you should continue doing
examples until you do understand binary addition. For aach axample wrile two
decimal numbers, then create thair binary aquivalents Add the binary equivalents. and
convert the sum back 1o a decimal value I you do not get the correct decimal sum
lhen you have made an error

BINARY SUBTRACTION AND NEGATIVE NUMBERS

Binary subtraction is far simpler than decimal subtraction because you have just
four possibilities. You may subtract 0 from 0 which leaves 0

0
-0
0

You may subtract 1 from 1 which again leaves 0:

1
-1

0

If you subtract O from 1 the result is 1:
1
i AN
1

But what happens when you subtract 1 from 0? Just as you would do for decimal
subtraction. so for binary subtraction you must borrow from the next highest bit as

follows:
*7 Borrowed

"

10 is the binary representation of 2: the illustration above subtracts 1 from 2. leaving a
result of 1. If there is no higher bit to borrow from, then the result is -1:

0

—

Extending subtraction to multi-bit (multiple binary digit) numbers is as simple as

extending subtraction to multiple decimal digit numbers. Here is the binary
equivalent of 4 - 2 = 2:

100
010

010

When you subtract two numbers, you subtract a subtrahend SUBTRAHEND
from a minuend. This may be illustrated as follows: MINUEND
4 «— Minuend
- 2 «g—— Subtrahend
=) -—— Difference

Looking at the binary subtraction of two from four. the ones digits are both 0: therefore
the difference is 0:

Ones digits

() ~— Minuend

 -s4— Subtrahend

In the case of the twos digits. we must subtract 1 from 0. Therefore we borrow 1 from
the minuend fours digit and obtain a difference of one:

Twos digits

The minuend fours digit is now 0: the 1 which was there has been borrowed_ by the mi-
nuend twos digit. Thus for the fours digits we subtract 0 from 0O, creating a difference of

0:
‘——' Fours digits

o= 10 0
s 1 0
e 1 O

Going to a more complex example here is the binary representation of
13210-4710 = 8510

L -47

Decimal

1"
132

=85

Binary

111 «@——Borrows
10000100 ~a——Minuend

00101111 <@——Subtrahend

01010101 -¢—— Difference

Here is a step-by-step illustration of the binary subtraction:

1 .6 0-0.0-3% 00 > 10600 003110

0601 0 3.9 11 IS G e A R T

/ 1

100000 110 @3 - 110,1:10

0010111 1=—m—a00101111

01/ Py
171110 1%
8 0% 813 A
014 0% 5301

We can check that the binary result is correct by generating its decimal
equivalent:

01010101

A

=0 =0=0—
E R R

e unnn

128

@ —
mlogcwouo-

Now this may surprise you but most computers cannot subtract. They can only
add. Fortunately this is no problem. Subtracting one number from another is
equivalent to adding the negative of the number. This may be illustrated as
follows:

4 +-(2)= +(-2)

The above solution might look ridiculous. but in fact it is not; it looks ridiculous only
because you are used to decimal numbers. Consider the subtraction of 3 from 9. You
could write this as 9-3. or you could write it as 9+(0-3). In fact 9+(0-3) is more compli-
cated than 9-3. To solve 9+(0-3) you must subtract 3 from O before adding the result to
9: but when you subtract 3 from 0 you get -3 which puts you right back to subtracting
3 from 9 — which was what you were going to do in the first place.

Subtraction in the world of switches and binary numbers cannot be resolved until we
find a way of representing negative numbers. A switch is a two-state device and we
cannot simply add a new state for the switch to represent a negative sign:

E) >
® &

4-21

Until we find some means of representing negative binary numbers. we cannot even try
10 come up with the binary equivalent of 9+(0-3).

In order to find some method of representing negative binary numhe[s. Ief us
begin with the simple case of numbers in the range 0 through -7; in their positive
form these numbers are represented by three binary digits as follows:

Binary
Decimal Equivalent
000
001
010
on
100
101
110
11

We cannot arbitrarily select a method of representing negative binary numbers;
our requirement is that we must be able to subtract by adding the negative repre-
sentation of the number.

The logical way of finding a binary representation for negative numbers is to try
subtracting the positive number from 0. Consider +3. Its binary form is 112. Let us see
what happens when we subtract 112 from 00:

~N OO sEWN—=O

00 -—— Minuend
- 11 <——Subtrahend

=7

Starting with the ones digits. we want to subtract 1 from O: that is impossible. so we try
to borrow 1 from the minuend twos digit — which is also 0. If we assume that we can
borrow 1 from the minuend fours digit (to the left of the twos digit), then this is what we
get:

Twos digit borrowed 1

Twos digit

*— Ones digit

100 -=— Minuend
- 11 ==— Subtrahend

=7

Now the minuend ones digit can borrow 1 from the minuend twos digit:

Twos digit (10-1 = 1)
Ones digit borrowed 1

hOnes digit

110 ~s—Minuend °
- 11 -=—Subtrahend
= ?

4-22

We can successfully perform the subtraction:

Twos digit

o i<

110 -=— Minuend
-1 1 -s—Subtrahend

0 1 -=—Difference (negative)

The difference in the ones digit is computed as 102 - 12 = 15. This is equivalent to the
decimal 219- 119 =110

The difference in the twos digit is simply 1-1=0.

We have succeeded in subtracting 3 from 0 using binary arithmetic but it involved a
sleight-of-hand which we must now account for; we borrowed 1 from the next high
order digit of the minuend (the fours digit in this case) when no such digit existed.

We have another problem that now needs resolution. The two bits 01 are shown repre-
senting the value -3; but they also represent the value +1.

These two problems have no solution within the context of binary cou nting as we have
defined it thus far. In order to handle subtraction —and the inevitable negative
numbers that can result — we must modify the rules adopted thus far for binary
counting. But the new set of rules must be logically and numerically consistent with
the needs of positive binary numbers. and the needs of binary arithmetic.

Fortunately there is a simple solution. Let us look at a few signed decimal numbers:

+10 +123 +47 + 83742
-10 -123 -47 -B3742

The one new feature introduced by the numbers illustrated above is the sign: there isa
plus sign (+) and a minus sign (-). Binary signed numbers could conceivably be illustr-
ated as follows:

+ 101 + 1110101 + 110 +1011010
-1011 -1110101 -110 -1011010
What we have is a plus (+) or minus [} sign preceding the string of SIGN OF
bits (binary digits). Now we cannot represent plus and minus signs BINARY
as separate and distinct entities within computer logic. Remember NUMBERS

computer logic consists of nothing other than two-state switches
We must therefore take the same two-state switch which represents 0 and 1 digits. but
now use it to represent plus and minus signs. If we use an "'off’’ switch to represent
a:plus sign, and an “on’" switch to represent'a minus sign, then the plus sign (+)
and the zero digit (0) are both represented by an “off”* switch: the minus sign [-) and the
one digit (1) are both represented by an “on” switch. Now our signed binary numbers
could be represented as follows:

01011 01110101 0110 b1011010
11011 11110101 1110 11011010

Positive numbers
Negative numbers

4-23

Unfortunately the method of representing negative numbers illustrated above is
not going to work. Consider the simple example of 5 - 3 = 2. Remember. we said that
in order to subtract we must be able to add the negative representation of the number.
Thus 5 - 3 = 2 becomes 5+(-3)=2. Does this work? Let us try and see:

if +5=0101 +3 =0011 and -3 = 1011
Then +5 + (-3)becomes 0101
+ 1011

10000
It does not work. Either the method we have adopted for representing the sign does not
work:
1011

i

Or the method we have adopted for representing the numeric portion of the negative
number does not work:

-3 =

20 o

1011
S
OKH
In order to find out what is wrong let us look at negative numbers more carefully.

The only way you can tell whether a binary digit is representing the sign of ‘a number or
a digit within the number is by looking at the binary digit position. The left-most bit
position must be interpreted as the sign bit:

Sign bit

01011010

B R

How are you going to tell the difference between a signed binary number and an
unsigned binary number that is 1 digit longer? The answer is you cannot tell the
difference by simple inspection. You simply have to know what you are dealing
with. This necessity to interpret numbers is, of course. not new 1o us. We discussed the
interpretation of numbers in Chapter 2, when describing Joe Bitburger's bill paying pro-
gram. Telling you that you must know in advance whether a binary number is signed or
unsigned is much the same as telling you that you must differentiate between a dollar
amount and the bank number on a check. This type of number interpretation is a cons-
tant necessity when dealing with microcomputers. You have to differentiate between
signed and unsigned numeric data. plus many additional ways in which a sequence of
bits [binary digits) might have to be interpreted: this gives rise both to the power and
the complexity of computer programming.

4-24

ll

Returning to the signed binary numbers, as we hav i i

: Nng ¢ " e defined them. let us examine the
sign t_m crltrcallv._Bv selecting the “off” switch to represent either a plus sign or a 0 bit.
positive signed binary numbers have the same numeric interpretation as unsigned bin-
ary numbers. This may be illustrated as follows:

Decimal Binary
Number Number
310 = 113

+310 = 0113

Whgn going ‘frotp positive unsigned numbers to positive signed numbers we add a
leading 0. which in no way affects the magnitude of the number. That means our repre-

slra‘n!ation of the sign is satisfactory. What about the numeric bits? We have one of two
choices:

1) V_-“e can place a 1, representing the negative sign, to the left of the positive number
high order bit:

S0=11L

.

2) !-f.tlemativelv we can take th‘e binary digit pattern created by subtracting the posi-
tive number from 0. as we did when we subtracted 3 from 0. and we can place the
one to the left of the most significant numeric bit:

0
3

00
1t
01

o

(0-3)

It just so happens that method 1), which we au i
r - tomatically selected, doe:
we demonstrated by trying to subtract 3 from 5). Method 2) is the shr;ﬂlztt“;:;ky%

go. Using method 2) this is how we would use f i igi
00 v PP et 7 : our binary digits to represent numbers

Numbers Numbers

Positive Negative Positive Negative
0 0000 0000

1 1 0001 1111
2 2 0010 1110
3 3 0011 1101
4 4 0100 1100
5 5 0101 1011
6 6 0110 1010
7 7 9111 100}

—i- Number bits
Sign bits

4-25

e representation of negative numbers illustrated above is | TWOS

::'el'red to as the twos complement of the number. COMPLEMENT
In order to generate the twos complement of a number you do | CREATING
not have to subtract the positive number from O, then add a high | THE TWOS
order (left most) 1 bit to represent the minus sign; there is a | COMPLEMENT
simpler procedure. First generate the ones complement of the | OF A NUMBER
number by inverting every bit (binary digit), that is to say, replace ONES
0 bits with 1 bits and 1-bits with O bits. Here are some examples of COMPLEMENT
binary numbers and their ones complements:

Binary Number: 101 11101 101010

Ones Complement: 010 00010 010101

Add 1 to the ones complement of the number and you have the twos coup!on\qm
of the number. Here are some examples, which you can verify against the negative bin-
ary numbers illustrated above.

+3 = 001

Ones Complement = 1100

Twos Complement = 1101 = -3
+5 = 0101

Ones Complement = 1010

Twos Complement = 1011 = -§

Now let us see if this binary representation of negative numbers is valid. If it is valid,
then we must be able to subtract a number by adding its twos complement, that
is, its negative representation. Consider numbers in the range 1 through 7: if we
make sure that we always subtract a smaller number from a larger number. then here
are some examples which verify that we have developed a valid representation
for negative numbers:

Decimal Binary
LRS- A

-7 1001 becomes 7 +{- = 4
6 1010 CL 1 1‘))
5 1011 +1101
-4 1100 =70100
3 1101
2 1110 Camry
-1 1M1 Py |
0 000 becomes T+ 4
1 0001 This is the binary form: 010 1‘)
2 0010 #1111
3 0011 =70100
4 0100
5 0101 Carry
6 0110
7 0111

The result is valid, but there is a carry. Whenever a positive difference is gener-
ated by a subtraction, there is a carry of 1.

4-26

.

What happens if you subtract a larger number from a smaller number? Exactly the
same thing that happens with decimal subtraction. You are left with a negative num-
ber. Here, for example, is what happens when you subtract 5 from 3:

35 2
+-2)

3+(5)
001 ‘i)
+HO1H
=1110

You can tell that the result is negative because the high order digit of the binary
result is 1. Remember. when you are dealing with positive and negative binary num-
bers. the high order bit represents the sign of the number. If the high order bit is 0, the
number is positive. if the high order bit is 1. as above. then the number is negative.

becomes
This is the binary form:

Itis very easy to create the positive equivalent of a negative number. You simply
take the twos complement of the negative number and you get back the positive
number. Here are some examples of positive numbers, their twos complement negative
equivalents. and regeneration of the original positive number:

+7 = oM
Ones Complement = 1000
Twos Complement = 1001 = -7
Ones Complement = 0110
Twos Complement = 0111 = +7
+4 = 0100
Ones Complement = 1011
Twos Complement = 1100 = -4
Ones Complement = 0011
Twos Complement = 0100 = +4

There is nothing very tricky about taking the twos complement of a number twice and
getting the number back. After all. in the world of decimal arithmetic two negatives
make a positive. For example. -{-2) is +2. Thus if the binary representation we have
developed for negative numbers is valid then the twos complement of a negative num-
ber must give back the positive number. which it does

We have developed a very elegant method of handling negative numbers and
subtraction using binary digits; but remember, computers do not have the intrinsic
ability to cope with negative numbers. So long as you are using a computer, it is
your responsibility to remember whether a binary digit pattern represents posi-
tive numbers only, or positive and negative numbers.

BINARY MULTIPLICATION AND DIVISION

We are not going to discuss binary multiplication or division in much detail. This
information will only be of value to you when you are a relatively experienced
microcomputer user. There is, however, a very interesting phenomenon associ-
ated with multiplying and dividing binary numbers.

In order to multiply a binary number by two you shift each bit one place to the left.
Here is an example:
2710 = 1By = 00011011,
2740x2 = 5449 = 3616 = 001 10110,

Shifting each bit of a binary number one position to the right is equivalent to divid-
ing the number by two. Here is an example:

3610 = 2415 = 001001007
1810.= 129 = 000100102

In reality there is nothing very surprising about shifting binary digits to multiply or
divide by two: you can do the same thing with decimal numbers. In order to multiply a
decimal number by ten you shift each digit one position to the left:

374 x 10 = 3740
Shifting decimal digits one position to the right divides the number by ten:
26730 = 2673
10

There are a variety of methods that people have devised to multiply and divide
binary numbers. Some of these methods are described in the ''Programming For
Logic Design’* series of books. If you program a microcomputer in a higher level
language you never need to concern yourself with the exact procedure whereby
binary numbers are multiplied, the compiler takes care of this chore for you. (Pro-
gramming language options are discussed in the beginning of Chapter 5.) Why
does anyone ever bother with assembly language? The answer once again is to
have better control of your program. For example. there are many different programs
you can write to perform binary multiplication or division. The various multiplication
and division programs will all give you the same answer: but some of them execute
very quickly while requiring a lot of memory to store the program. while others take a
long time to execute but have relatively short programs. If you use a higher level
language, then you take whatever multiplication or division program the language hap-
pens to give you. If you write your program you can choose the multiplication or divi-
sion method that is the fastest to execute, or the method that uses the least memory

OCTAL AND HEXADECIMAL NUMBERS

It takes a mathematical genius to convert, by inspection. between multidigit decimal
and binary numbers. Converting between multidigit decimal and binary numbers is not
easy. This is a problem to humans, but it is no problem to a microcomputer. A
microcomputer works entirely with binary digits: it does not even know that decimal
digits exist. But humans find binary numbers very difficult to work with. The manipula-
tion of binary numbers is inconvenient, time consuming and prone to error. Imagine
how easy it is to transpose a 0 and a 1 — and how hard it is to spot such an error. This
has resulted in people adopting counting systems which are more compact than
binary, yet have a simple relationship with binary digits. The two number systems
most commonly used are “‘octal’’ and *“hexadecimal’.

Every octal digit represents exactly three binary digits, as follows:
Binary: 000 001 010 011 100 101 110 111

Octal: 0 1 2 6B S kaleBi Bt

The word “‘octal” is derived from the number 8. Octal numbers are ‘‘base 8’ num-
. bers. Thus the numeral 10, which is ten in the decimal counting system, is eight in
the octal counting system.

You may well look at the 8 octal digits illustrated above and ask what difference there is
between octal and decimal digits. There is none in the range 0 through 7 but octal

4.98

s e e £ e

digits have no 8 or 9 Thus. multioctal and multidecimal digits will not have the same
values. This may be illustrated as follows:

Decimal Octal
5 o
6 by
7 7
8 10
9 1
10 12
1 13
12 14

Octal numbers are identified by a trailing 8 subscript as follows:

My = 13g

11 (Decimal) = 13 (Octal)

Qonverting binary numbers into their octal equivalent is very straightforward: yvou
simply partition the binary number into groups of three binary digits and replace each
rgrm.rr) of three binbry digits with its octal digit equivalent. This may be illustrated as
ollows:

Binary: 110 101 110 111
Octa: 6 6 g

Thus 1101011101113 = 6567g

Conversely. if you want to convert an octal number to its binary equivalent. you simply

;eplace each octal digit by its three binary digit equivalent. This may be illustrated as
ollows:

Octal: 2 5 7 4
—hn, i, b, b,

Binary: 010 101 111 100
2574g = 0101011111009
Every hexadecimal digit represents exactly four binary digits as follows:

Binary: 0000 0001 0010 0011 0100 0101 0110 0111
L T i . St et e e, i, o, o i, g
Hexadecimal: 0 1 2 3 4 5 6 7

Decimal: 0 1 2 3 4 B 6 7

Binary: 1000 1

""-\P-“_Vd

Hexadecimal: 8 9 A B C D E F
Decimal: 8 9 10 1 12 13 14 15

001 1010, 1011 1100 1101 1110 1

The word hexadecimal is derived from the number sixteen. Hexadecimal numbers
are base sixteen numbers. Thus the numeral 10, which is ten in a decimal counting
_svstern and eight in an octal counting system, is sixteen in a hexadecimal count-
ing system. This poses a novel problem: if 10 represents sixteen in the hexadecimal
counting system. then there must be sixteen single numeric digits in the hex-
adecimal counting system, just as there are ten single numeric digits in the decimal
counting system. The six additional hexadecimal single numeric digits are repre-
sented by the letters A, B, C, D, E and F, as illustrated above Thus you must
differentiate between the letters A through F representing hexadecimal digits or letters =
of the alphabet. While this may seem to make things unnecessarily complicated: in

A4.-29

reality you will find it is never a problem. When you look at a piece of data you know au-
tomatically whether you are looking at numbers or text. confusion will never arise

You should understand very clearly that octal and hexadecimal counting systems
are useful to humans but computers are unaffected by the counting system you use 10
write data on a piece of paper. computers only recognize binary data.

If microcomputers do not understand octal and hexadecimal number systems, can
it really be easier for you to learn counting systems, rather than staying with
decimal numbers and coping with decimal-binary conversions? The answer is yes,
you are better off learning octal and hexadecimal counting systems. Let us illustr-
ate this point with an example. The decimal number 2735 has the following binary. oc-
tal and hexadecimal equivalent:

A A F
— e, e, e,
Decimal 2735 = 1010 1010 1111
—————
P2 s

Hexadecimal
Binary
Octal

We have described the standard technigues you can use to create binary digits out of
decimal digits and vice versa. But these techniques are time consuming. clumsy and
never easy to work with, no matter how well you understand binary and decimal num-
bers. On the other hand, you can convert between octal or hexadecimal numbers. and
their binary equivalents by inspection. Once you leamn to think in octal and hex-
adecimal, and that is really quite easy, you will have the advantage of a short notation
for writing data, and a trivially simple conversion process for going to and from binary
equivalents. This argument is much the same as the argument which is leading the en-
tire world to metric measuring systems. There is no inherent difference between
measuring distance in kilometers and meters, as against miles and yards. similarly there |
is no inherent difference between decimal or hexadecimal counting. Bul in one case
conversions are clumsy, while in the other case they are straightforward.

Table 4-3 summarizes numbers in the range zero through sixteen, showing their
binary, decimal, octal and hexadecimal representations.

Table 4-3. Number Systems

Hexadecimal Decimal Octal Binary
0 0 0 0000
1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
6 6 6 0110
7 7 7 01
8 8 1C 1000
) 9 1 1001
A 10 12 1010
B 1 13 101
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1
10 16 20 10000

a.20

e i S

The only aspect of octal and hexadecimal numbers with which you need to con-
cern yourself is the conversion between these numbers and binary or decimal
rmmba_u. Addition and subtraction using octal and hexadecimal numbers is identical
to addition and subtraction using decimal numbers — bearing in mind, of course, that
each numbering system has its own set of numeric digits. ‘

OCTAL-HEXADECIMAL CONVERSIONS

Ii_ you wish to convert from octal to hexadecimal or from hexadecimal to octal, the
sumplast_ way of doing it is via a binary intermediate step, since binary numbers
have a dlgit-bv-dlgit correlation with both octal and hexadecimal numbers. For exam-
plg. consider the hexadecimal number 3C2Fqg: we may create its octal equivalent
using Table 4-3. as follows: .

Hexadecimal: 3 C 2 F
. — e, e, e,
Binary: 0011 1100 0010 1111

—

e ———. et
Octat 0 3 6 0 T
Thus 3C2F1g = 36057g

You may convert the octal number 23754 1o its‘hexadecimal equivalent as follows:
P Eastal Y 2ing ey aeeE T 1Y
5 e, . i . .
Binary: 010 011 111 101 100
———— . — —
Hexadecimal: 2 Ton pil G
Thus 23754g = 27EC1g

DECIMAL-OCTAL AND DECIMAL-HEXADECIM
CONVERSIONS i

Converting a decimal number to its octal or hexadecimal equivalent follows the

logic which we have already described for generating the bina
ottt S g9 g ry equivalent of a

Consider first the conversion of a decimal number to its hexadecimal equivalent.
We ma_ke the conversion beginning with the least significant (that means the right
most} digit. If our hexadecimal number is going to be a two-digit number, then it would
consist of sixteen {the base) multiplied by some fixed digit (R} with a remainder of S:

RS16 =Ryp x 1610 + Syp

In order to find out what this remainder S is. we divide the decimal number by the
base (sixteen) as follows:

lBl NNN
R remainder S

NNN is a decimal number: it is equal to the hexadecimal number RS1g. Here is a real

numeric example:
15] 124
7 remainder 12

Therefore 124 = 7x16 + 12
so 12449 = 7Cyg

Thus we are able to generate the digits R and S and we have a complete decimal-to-
hexadecimal conversion. Decimal 124 equals hexadecimal 7C.

Now consider the larger decimal number 28210. When we divide 28210 by 1610 thisis
what we get:

16 | 282

17 remainder 10

The remainder (S) is 10 decimal which you will see from Table 4-3 has the hexadecimal
equivalent A1g. So far so good. But R. the multiplier for the base. has the decirpgl
equivalent 17. You will see from Table 4-3 that there is no single hexadecrm_al digit
representing the decimal value 17. In order to generate the hexadecimal equivalent.
therefore, we must go the next step and divide 1719 by 1610:

1612 8 2
61 7r 10
28219 = 11A15‘/

Let us convert the same two decimal numbers, 1241¢ and 28210, to their octal
equivalent. Since octal numbers are base eight. we must repeatedly divide the decimal
number by 81¢ in order to generate the octal equivalent. This may be illustrated as

follows:
8| 124 8| 282
815 r4 836 r2
FURT 413
12419 = 174g 28219 = 4323")

Now we can make sure that our conversions are correct by Mlng the octal and
hexadecimal equivalents of 12410 and 2821¢ via their binary intermediate:

1 e 4 3 2
b, . b, b, + s,

001111100 100011010
Sttt St g st et Nt S e o’
0 7 C 1 1 A

12410 = 174g = 7C1p 28210 =432g = 11A4g

The octal and hexadecimal conversions are indeed correct.

Converting octal and hexadecimal numbers to their decimal equivalent is easy
enough if you remember what the various digits of an octal or hexadecimal num-
ber represent. In order to keep things simple. consider four-digit numbers. The dgcamal
representation of any four-digit number may be defined by the following equation:

Decimal value = P x (Base)3 + Q x (Base)? + R x Base + S

A number with more than four digits would simply have terms to the left with higher
powers of the base. Now the general four-digit equation can be rewritten for the
specific cases of octal and hexadecimal numbers as follows:

- Decimal value = P x 83+ Q x 82 + R x 8 + S for octal numbers
Decimal value =P x 163 +Q x 162 + R x 16 + S for hexadecimal numbers

In order to convert an octal or hexadecimal number to its decimal equivalent, you
multiply each digit of the octal or hexadecimal number by the appropriate base
multiplier. Here are some examples:

2473 = (2x83 +4x82 + 7x8 + 3)1p
(2x512 + 4x64 + 7x8 + 3)10
{1024 + 256 + 56 + 3)4p
133919

(1x163 + 4x162 + 9x16 + 10)19
(1x4086 + 4x256 + 9x16 + 1010
(4096 + 1024 + 144 + 10)
527410

S B |

149A45

nnounn

CHARACTER CODES

The two-state switches which microcomputer logic uses to generate binary digits must
also be used to represent letters of the alphabet and any character capable of being dis-
played. printed or otherwise handled. If. as we stated at the beginning of this chapter.
computer logic consists of nothing more than an array of two-state switches. then in
order to represent characters, we have no option but to use switch (and therefore
binary digit) patterns to also represent characters.

In order to come up with some reasonable character coding technique we must
explore two problems:

1) Is there any “natural’”’ method of representing characters, as there is for
representing binary data?

2) How will we distinguish between a binary digit pattern representing a
character, as against the binary digit pattern representing numbers or any
other information?

There is no “natural” method of representing characters using binary digit codes and
any binary digit code which we generate could also be interpreted as a binary number.
Once again we encounter the need for you. as a programmer. to know in advance what
a binary numeric digit sequence represents. And once again you can rest assured that
this multiple use of binary digits never creates problems

The various codes used to represent characters all use a byte (8 binary digits) to
represent a single character. A byte has 266 different possible combinations of 8 bin-
ary digits:
7 & 5 4 3 2 1 0-—— Bit Number
A byte

000 0
[BRE | 1
0 (1] 2

01 129
10 130 Decimal value
1 1 13 of bit pattem

e % R AR Pl T 253
10 254
1t 255

4.373

Thus a byte may be interpreted as:

1) A positive number with a decimal value in the range 0 through +255.
2) A signed number with a decimal value in the range -128 through +127
3] One byte of a multibyte signed. or unsigned number

4) A character code.

The most popular coding scheme used to represent characters
is known as the American Standard Code for Information In-

terchange, generally referred to by the letters ASCII. The complete ASCIl code set
for all printable characters is given in Appendix A

Only the ASCII character codes for the numeric digits O through 9 have a logical basis
for their selection. If you look at these character codes you will see that the four low
order binary digits exactly equal the numeric value associated with the character:

Binary Hexadecimal ASCII

Code Equivalent Character
00110000 30 0
00110001 31 1
00110010 32 2
00110011 3 3
00110100 34 4
00110101 35 5
00110110 36 6
00110111 37 7
00111000 38 8
00111001 39 9

Notice that in Appendix A we show the binary digit pattern representing every.

character code using its hexadecimal equivalent. This makes the character codes far
easier to read. We can show the numeric equivalent of a text string using hex-
adecimal digits as follows:

Thiws IR t h e numer-rt i ¢
54 68 69 73 20 69 73 20 74 68 65 20 6E 75 6D 65 72 €9 63 0D

e qguwivyal-aaat o f a
65 71 75 €9 76 61 6C 65 6E 74 20 6F 66 20 61 0D

e o ol ; s T i mg
24 65 78 74 20 73 74 72 69 6E 67 2E

Each of the text letters has beneath it the two hexadecimal digits which represent the
ASCIl code for the letter. as defined in Appendix A Notice that in between words the
hexadecimal code 201g appears: this is the code for a space. The code 0D 1g represents
a carriage return.

of characters stored via their numeric codes. That is why we

referred to the text above as a ""text string”’.

Within a computer your text will be stored as a sequence of bits (binary digits).
When you want to print this text you fetch the bits in the proper sequence and transmit
them to a display or printer. Logic associated with the display or printer interprets the
binary data assuming that it represents characters

The word “'string’’ is commonly used to describe a sequence

4-34

e

If you enter text via a keyboard, then each time you depress a key the binary digit
coc!e associated with the key you depress is transmitted to the microcomputer —
which stores the code in appropriate memory.

You can modify character codes by treating them as binary data. Suppose. for ex-
ample. that you have a large amount of numeric data which you wish to store in memo-
ry. and you have no alphabetic data. If you look again at the ASCII table in Appendix A
you will see that all decimal digits have the same four high order bits:

ASCII code for decimal digit N is 3N1g.

You could save a lot of memory by packing decimal digits, two PACKED
per byte, as follows: BYTES
Decimal numbaer 2 3 i 4
ASCIl code 3 2 < | 3 3 i d 3

E
3

Packed bytes

IOlDlIlOIOID[IIII |0!I!I!I!0!I!O!0I

Byte O
By performing the operations illustrated in Figure 4-1 on your character codes, you
can re-create the ASCII characters.

Brte 1,

COMPUTER LOGIC AND BOOLEAN
OPERATIONS

A microcomputer will spend very little of its time doing arithmetic. In fact there are
many programs _1hal contain no arithmetic whatsoever. A computer will spend most of
its ume performing “logical” operations

STATUS FLAGS

If you examine the flowcharts for program logic given in Chapter 2, you will fre-
quently see the following type of decision step:

i
-+
?

No

One common method for handling simple two-way decision logic, as illustrated
above, is to provide the microcomputer with some special switches called
::stat'us flags". Events preceding the logic step must place one of these switches

loff‘ or “on". The two-way decision making logic then becomes a single instruc-
tion which may be illustrated as follows:

“If flag is on, branch to instruction x.
If flag is off, continue with the next instruction.”

Status flags represent one of the simplest forms of microcompuler logic. Different
microcomputers have different numbers and types of status flags, but identifying them

A.AE

Data Example
(using Byte 1)

00100011

00100000

00000010

00110010

00100011

00000011

00110011

Program Logic

Fetch packed byte

Isolate four high
order bits {or nibbla}

Shift four high order
bits 1o four
low order bits

Add 30,5

Y

Output to printer
or display

Y

Fetch same
packed byte
again

Y

Isolate four low
order bits {or nibble)

Add 3045

[

Output to printer
or display

l r:

Figure 4-1. Packed Byte Disassembly And ASCIl Code Creation Logic

4-36

b

individually is unnecessary at this point. In order to understand the concept of a
status flag, all you need to think of is a two-way switch which instructions in your
program can turn “‘on"’ or “off'’; subsequent instructions in your program test the
switch in order to determine which of two paths your program logic will take. This
may be illustrated as follows:

Instruction
Status =0 Sequence
Status = 1 Set status
1wl
Is status O Mo
?
Yes
Next Next
Instruction Instruction
if yes if no
LOGICAL OPERATORS
Most computer logic is generated by four “logical operators"”. LOGICAL
There is nothing very mysterious about “logical operators’’: OPERATORS

addition, subtraction, multiplication and division are
“arithmetic operators’’. A logical operator takes data input, does something non-
arithmetic to it, and creates a result — just as an arithmetic operator takes data in-
put, does something arithmetic to it and generates a result.

There are four logical operators; they are the NOT, AND, OR and Exclusive-OR
operators. We will discuss each logical operator in turn.

THE NOT OPERATOR

The NOT operator is the simplest to understand. This operator simply says: move a
switch lo its opposite setting: that is. if it is “on™. turn it “off”" and if it is “off”, turn it
“on” Looking at the effect of a NOT operator on a bit (binary digit). it convertsa 1 to
a0 or a0 toa 1. This may be illustrated as follows:

NOTO = 1
NOT1 = 0
NOT 101101 = 010010
4.-37

Frequently a bar over a number is used instead of the NOT. This may be illustrated
as follows:

T =1
1 =0
101101 = 010010
- ONES
The NOT operator creates the ones complement of a num
ber. Remember the first step in creating the twos complement COMPLEMENT

of a number is to create the ones complement of the number.

THE AND OPERATOR

The AND operator tests for two switches both being “on”. AND operations may
be defined as follows:
0 AND O
0 AND 1
1 AND O
1 AND 1

A dot (.) is frequently used instead of the word AND. The four AND operations illustr-
ated above may therefore be rewritten as follows:

000

nnun

00 =20
0+f. -= 0
10 =0
11 =1

AND operation logic is a common part of our everyday lives. For example. | have two
small sons, lan and Paul, both of whom are young enough to argue a lot. When shop-
ping at the supermarket. if the two boys can buy just one F:andv bar, then the candy bar
will be selected on the basis of the AND operation. That is to say. we buy candy bar X
only if lan wants candy bar X AND Paul wants candy bar X:

lan wants candy bar A and

Paul wants candy bar X. AX = 0
No candy bar selected.

lan wants candy bar X and

Paul wants candy bar X. XX = 1

Buy candy bar X.

If either lan or Paul rejects a candy bar. then based on AND logic. the candy bar will not
be selected

4-38

-

We have also seen a microcomputer application for the AND
operation. Recall that we explained how numeric digit character

codes can be stored two per byte. In Figure 4-1 you could use an 8-bit mask and an
AND operation in order to isolate one or the other numeric nibble. This may be il-
lustrated for byte 1 of Figure 4-1 as follows:

High order Low order
nibble nibble

s
L

Byte 1: 00100011 00100011 " Byte 1
Mask A for Mask 8 for
high order 11110000 00001111 low order

nibble nibble

(Byte 11iMaska) 00100000 00000011

Wherever a 0 bit must be inserted in a sequence of data bits we provide a 0 bit in
an AND mask. Wherever the AND mask has a 1 bit it passes data bits through
unaltered. For example. suppose you want to preserve bits 2, 3, 4 and 5 of a byte, but;
you want bits 0 and 1. and bits 6 and 7 to be 0. You would AND your binary data with
the mask 00111100. This may be illustrated as follows:

7 6 5 4 3 2 1 0-w—BitNo.
Binarydata: X X X X X X X X
mask:: 0. 01 1 1 1.0 0
DataANDmask: 0 0 X X X X 0 0

THE OR OPERATOR

The OR logical operation is a test for ANY ““on’’ switch. The OR operation may be
defined as follows:

QURG " = 0
OOR 1 =1
1TORO =4
10R 1 = 1
The plus sign (+) is frequently used instead of OR. The four OR operations illustrated

above may therefore be rewritten as follows:

0+0
0+ 1
1+0
1+1

.o 4 n

_-—— O

The fact that a plus sign may be used to represent the OR logical operator may confuse
Yyou. but it is irrelevant to a computer. There will be distinct instructions, with their own
independent instruction codes, representing an addition operation or a logical OR
operation. The plus sign being used to represent addition or a logical OR operation will
occur only in printed or written material.

4-39

The OR operation once again is a familiar part of our daily lives. For example, when
stocking up on breakfast cereals at the supermarket. | will buy cereal X if either lan or
Paul wants it:

Does lan Does Paul
want want
cereal X? cereal X? Buy cereal X?
Nol =0) + No (=0) = No (=0)
No (=0) b Yes (=1) = Yes (=1)
Yes (=1) + No (=0) = Yes (=1)
Yes (=1) + Yes (=1) = Yes (=1)

We can use the OR operator on our decimal digit character example {Figure 4-1) in
order to provide the four high order bits of the character ASCII code. This may be il-
lustrated as follows:

7 6 5 4 3 2 1 0-a—BitNc.
Isolated nibble: 0 0 0 0 0 0 1 1
OR mask for high order fourbits: 0 0 1 1 0 0O 0 0
TR O BT R G e

Wherever a 1 bit must be inserted in a sequence of data bits we provide a 1 bitinan OR
mask. Wherever the OR mask has a 0 bit it passes data bits through unaltered. This may
be illustrated as follows:

7 6 5 4 3 2 1 0 -e—BitNo.
Binarydata: X X X X X X X X
Arbitrarymask: 0 0 1 1 1 1 0 0
DataORmask: X X 1 1 1 1 X X

=

Thus the AND operator may be used as a “‘clearing’”” mask while the OR operaton

may be used as an “inserting”” mask.

THE XOR OPERATOR

The last logical operator we will describe is the Exclusive-OR, or XOR. The Ex-
clusive-OR tests for differences and changes; it may be defined as follows:

0XOR0O = 0
OXOR1 = 1
1X0R0 = 1
1X0R1 =0

The @ symbol is frequently used instead of the letters XOR. Thus the four XOR
operations illustrated above may be rewritten as follows:

0o®o0 =0
o1 =1
1®0 =1
1®1 =0

The Exclusive-OR is also a part of our daily logical lives; it identifies differences of opi-
nion. For example. a fight results when lan says yes and Paul says no:

lan's opinion Paul's opinion Fight?
No (=0) (O] No(=0) ~ = Nol(=0)
No (=0) @ Yes (=1) = Yes(=1)
Yes (=1) (O] No (=0) = Yes(=1)
Yes (=1) ® Yes (=1) = No (=0
4-40

In computer logic you will use the Exclusive-OR operation to check for changes in
state. Suppose, for example, knowing that a switch is “on” or "off” is insufficient: you
also ne_ed to know whether the switch has been switched “on” or “off” since von.; last
tested il. You can save the condition of any switch each time you test it, then compare
the switch position with the saved condition as follows: '

Switch Last Setting
T X Save switch setting
Y New switch setting
Y @ X Compare settings and

look for change

Thus by periormir)g an Exclusive-OR operation on the switch condition and its previous
setling you can find out whether the switch changed setting since you last tested it.

4-41

Chapter 5
INSIDE A MICROCOMPUTER

We have now described overall microcomputer concepts in Chapters 1, 2 and 3;
then in Chapter 4 we went to the other extreme, defining the basic concepts out
of which any computer function can be created. It is now time to bridge the gap
between the fundamental concepts and the end product — the microcomputer
system. We are going to bridge this gap in the next two chapters. In this chapter
we will look at the microcomputer itself, separating and exploring its various com-
ponents. In Chapter 6 we will look at the way in which the basic digital logic con-
cepts of Chapter 4 can be used to create the components of the microcomputer
. system described in this chapter.

In order to examine the functional components of a microcomputer let us begin by
. looking at the way in which a microcomputer may be programmed using a pro-
gramming language.

ABOUT PROGRAMMING LANGUAGES

There are so-called “higher level’’ languages, such as BASIC, FORTRAN and
COBOL. There.are also "‘fundamental’’ programming languages referred to as "'as-
sembly language”’.

Regarding any programming language, the most important point to understand is that
a programming language is a programmer’s convenience. A programming language
is an.artificial creation. designed to make your life as a programmer easier. Whatever
language you decide is best for you. the computer stilt demands that it receive the
program as a sequence of numbers:

No\fu the computer will, itself, take care of converting the program from the form in
which you. the programmer, write it. to the form in which it. the computer. can unders-
tand and execute it In order to make this conversion, the computer executes another
program — a program which someone else wrote for you.

A program called an "‘assembler’” converts programs which ASSEMBLER

you write in assembly language into programs which the com-
puter can understand and execute:

iRz e)

Compvter
Digestible “
Program

A program referred to as a "‘compiler’” accomplishes the same
conversion task for programs which you write using a higher
level language.

Assemblers and compilers treat your program as data; they read in data {your program)

and ionvert it to another form of data (the computer executable version of your pro-
gram).

We refer to a program in human readable form as a “‘source SOURCE Step 2 - The Execution Step

program’’. That is to say. a source program is a program written in PROGRAM .

a programming language. Once the program has been con- OBJECT l Memory

verted into its computer readable form, it is called an "‘object PROGRAM

program’’. An object program is nothing but a sequence of num- The object

bers. This may be illustrated as follows: program
.Memory
space you

can use
for data, or
any other purpose
Another type of compiler never saves the computer reada- INTERPRETER

ble form of your program (i.e., the object program). This
type of compiler is called an ““Interpreter’”. When you use an interpreter. your whole
source program resides in memory, along with the interpreter, for as long as the source
program is being executed. This may be illustrated as follows:

Memory

Memory space
for data

Your source

@ource Program Conwersion Object Program progrom

stored here

The Interpreter
is stored here

Thus assemblers and compilers read in data (your source program) and convert it to
another form of data (an object program).

In reality there are two types of compilers. One type of compiler takes your program,
converts it into a computer readable form and saves the computer readable form. Sub-
sequently the computer readable form is loaded into memory for execution. This may

be illustrated as follows:
= Ty
Space for the i

‘]’he interpreter converts your source program into object code as needed. This may be
illustrated as follows:

bbbt ey g

This area of memory is

reserved for data This piece of Source
program is to be
Your whole source \@Xecuted next,
program is stored here.

Step 1 - The Compiling Step

object program 1
The compiler reads your To the microcomputer \ The interprater is stored here.
Space for your source program, as data,
SOUFCE program and converts it into an *
} object program — which

The interpreter creates the object code for the
piece of source program which must now be ex-
ecuted, and transmils instructions, one at a time,
to the microcomputer

the microcomputer can
The Compiler understdnd and therefore
axecute.

BRI

5.2

The illustration above shows an area of memory being set aside for your whole source
program. You might be misled into thinking that the amount of memory set aside for
your source program puts an upper bound on the size of source program which you can
execute. In fact, you can execute much larger programs so long as the larger program
can be broken into blocks. where no one block overflows the available source program
memory space.

Compilers and Interpreters are themselves object programs which somecne else wrote
for you.

We can explain the difference between a compiler and an interpreter in non-tech-
nical terms by thinking of the ways in which an actor may learn to deliver linesina
‘play. Think of the source program as the actor's script: object program instructions
going to the microcomputer are equivalent to the actor delivering his lines to an au-
dience. If the actor learns his entire part. then throws away the script and delivers his
lines, what he has done is equivalent to compiling a source program. But suppose the
actor does not learn his entire part. suppose the actor keeps the script and has a
prompter display his lines one at a time. using prompting boards. He is now delivering
his lines in the fashion of an interpreter.

BASIC is the most popular microcomputer higher level language: it 1s also an in-
terpreter language.

In summary, we can divide most programming languages into ‘‘higher level”
languages and “‘assembly’’ language. Higher level languages are converted into ob-
ject programs by compilers and interpreters. Assembly languages are converted into
object code by an assembler.

The principal difference between higher level languages and assembly language is

the fact that higher level languages are designed to represent problems, whereas '

assembly languages are designed to represent the computer. Thus a computer
views a higher level language source program as a very alien thing and a compiler has a
big job converting the source program into an object program. In contrast. an assembly
language source program can be converted into an object program quite easily. an as-
sembler is therefore a relatively simple program. Let us now compare higher level
languages and assembly language in order to more clearly identify differences between
the two.

A COMPARISON OF HIGHER LEVEL LANGUAGES
AND ASSEMBLY LANGUAGE
We will first look at the advantages of higher level languages.
Higher level languages are easier than assembly language to use: that is because
higher level languages represent the problem rather than the computer. For example. a
simple addition would be written in this self-evident form using a higher level
language:

SUM = VAL1+VAL2

VAL1 and VAL2 are names you assign to an augend and an addend — which can have
any values. SUM is the name you assign to the sum.

Assembly language presents you with a definition of your computer —in a human
readable form. Thus the addition illustrated above would be programmed in assembly
language as follows:

LXI H.VAL1
LDA VAL2
ADD AM
STA SUM

g

.

VAL1 and VALZ are no longer names you assign to the augend and addend; VAL1 and
VALZ are now addresses — they identify memory locations in which the augend and
addend are stored. Thus the augend and addend must each be small enough to fit with-
in one memory location. SUM. likewise, is the address of the memory location where
the sum will be stored — providing it will fit into one memory word.

The assembly language definition of the addition is by no means self-evident.

There is another important advantage associated with the fact that higher level
languages are “problem-oriented”. What we mean by “problem-oriented” is that the
language is not designed with any computer in mind. Therefore if you write a program
in a higher level language, you can convert this higher level language source pro-
gram into an object program that will run on any computer — providing the com-
puter has a compiler (or interpreter) for your higher level language. Suppose. for ex-
ample, you write a program in BASIC. You can execute this BASIC program on your
computer: and all of your friends can execute your program on their totally different
computers — providing their computers also have BASIC interpreters. This may be il-
lustrated as follows:

Your
BASIC source
program
)
{ ik
f g
Computer Computer Compufer Computer Computer
A B c D E
Interpreter Interpreter Interpreter Interprater Interprater
Y] Y Y Y
Computer Computer Computer Computer Computer
A B Cc D E
object code object code object code object code object code

Assembly language. on the other hand. is a human representation of the computer you
are using. Thus. every single computer and microprocessor has its own, unique assem-
bly language: and a program written in one computer or microprocessor's assembly
language is totally unintelligible to any other computer or microprocessor. If you write
an assembly language source program for your microprocessor. only people with
microcomputers containing your microprocessor will be able to assemble and run your

source program. "

In theory it would be possible to write a program akin to a compiler that would take a
source program writlen in one microprocessor's assembly language and convert it into
an object program for another microprocessor. In reality few people do.this, since

another microprocessor's assembly language is as strange and hard to deal with as a
higher level language.

With all of the advantages that accrue from programming in a higher level
language, why would anyone bother with assembly language? Assembly
language also has advantages.

In the first place, assembly language generates much shorter object programs than
higher level languages. This is because the assembly language for each
microprocessor or computer is designed specifically for that microprocessor or com-
puter. In fact. an object program created by a compiler from a higher level language
source program is usually 2 to 4 times as long as the same object program created by
an assembler from an assembly language source program. This is because the compiler

anguage program to represent the probie!'n. as
But whereas a human programmer can write an
judgement. a compiler must do the job by

must. in reality. write an assembly |
defined in the higher level language.
assembly language program using human
fixed rules.

Consider an everyday analogy: you must g
one point to another in a city. If you know 1h
exact city. you can define a very direct route:

ive someone directions to drive from
e exact source and destination. and the

(1) ‘?
) Do R i
e R L iz, o
TR i i Al

FERRY
\ POILDING

Now try to create a set of general-purpose instructions which You can string together in
order to define the route to be driven between any two points in any city. These instruc-
tions. if they are to be interpreted by a machine, can leave nothing to the imagination.
Thus there must be some fixed number of instructions such as:

Turn left

Turn right

Test for a one way street
Test for a dead end road
Test for a 45° turn

etc.

You cannot include instructions that assume you know whether or not a street is one
way. since one way streets are subject to change. You cannot include instructions that
simply define the number of blocks to travel in a straight line, since there may be bar-
riers in the road preventing such travel: or in cities with steep hills such as San Fran-
cisco. a road which appears to be continuous in reality has a 100 foot (i.e.. 30 meter)
precipice dividing it at some point.

Once you start devising a set of general purpose direction rules that take into account
undefinable contingencies, you will have some idea of the problem faced by a compiler.
The compiler does not know what the peculiarities of any specific computer may be,
therefore it must generate programs that take into account the strangest possibilities.

Higher level languages have another problem. The compiler which converts a higher
level language source program into an object program is itself a large program. A com-
piler program may be eight times as long as an assembler program. Thus until your
microcomputer system is quite large you cannot use a higher level language, since
your microcomputer system will have insufficient memory to hold the compiler.

If you have an interpreter, then the interpreter must always be in memory,
together with the program you are executing. This difference between a compiler
and an interpreter was illustrated earlier in the chapter.

The fact that higher level language source programs generate longer object pro-
grams also means that the object program will take longer to execute, since there
are more instructions to be executed. If your application is running into speed prob-
lems, you can speed things up by a factor of 2. or more, by simply re-writing your pro-
gram into assembly language.

Even some of the advantages associated with higher level languages are not all they ap-
pear to be. For example, higher level languages are supposed to be portable; that is
to say, one higher level language source program can be compiled and executed by
many different microprocessors. This is not always true. Frequently you will find that
there are minor differences in the way one computer's compiler expects the
Source program to appear, as compared to the next. However, even in the worst
case, the changes you would have to make to a higher-level language source program,
when going to a new microprocessor or computer. are tiny compared to the problems
associated with completely re-writing the ‘program in the new microprocessor or com-
puter's assembly language.

What then is our conclusion?

If you are going to use a microcomputer simply as a vehicle for executing pro-
grams, you should go to higher level languages as quickly as you can. If, on the
other hand, you plan to get inside the microcomputer itself, building your own,
changing it, extending it, or otherwise playing with its components, then you
should learn assembly language as quickly as possible, and you will probably stay
with assembly language.

.

MlCROCOM PUTER FU NCT|0NAL LOGIC Ops_eratic_m; which are actually performed on data are performed by CENTRAL
| Logr!c ‘:I:,hm the Central Processing Unit. These operations are PROCESSING
. ; ¥ efine as i i i
The object program you create determines the functions that will be performed by the T o b T e e, o T

stitute a program. The program is stored in program memory. Thus

R ST oA step 2) of the above three steps is handled b

' in Ei y the shaded micr

. Functionally Figure 5-1 illustrates the logic of a microcomputer: this is the logic shown in Figure 5-3. ocomputer logic
; SHNER sy Bep . quivy) S : Program memory can be read only memory, or it can be PROGRAM
. It does not matter what the microcomputer is going to do — ultimately the task : feadfwrige memory. Program memory can be read only momory s
l;. consists of these three steps: because instructions are transmitted from the program stored in

RS R ﬁ;igsr;r;ller;e’:l%y.l ;: (t:r;i t(;?nptrat Prc_nceslsJing Unit; but instructions are usually not
r rocessing Unit to program memory.
2) Modifying the data. does not have to be read only memory. It is cor:?non practicI:‘Ir i: mrr?ii:arr:c;nr:;;r::?g
3) Transmitting the modified data back out from the microcomputer. Systéms lo separate programs from data. as shown in Figure 5-1, and in many industrial
microcomputer appllgalrons. programs are held in read only memory to ensure that the
program is never accidentally changed or lost

Logic beyond the Microcomputer
e.g.. Keyboards, Displays, Printers
and Bulk Data Storage Units
Logic beyond the Microcomputer
Dl!’.l Data Da@ Dnn‘ o e g
n out in ou - m'“s""k: m‘i‘. s o
S Data Data Data Dats
Instructions Centra ;:} = in out in I | out ﬂ
Program P ing »
Memory Unit K Memory _ | 'y s
I [Instructions Central
Data to be processed Frog! o £
e " Unit Memory
Figure 5-1. Microcomputer Functional Logic Data to be proc
i i i i i i lier i :
Logic beyond the microcomputer (which consists of physical units we descnbadle_ar i B+ MK assripater isos :
in this book) is used to enter information, receive results and s_lore large quantities of Data Movement Aﬁg"gfﬂrtoglc Involved In
data. Data that is in the process of being operated on is stored in data memory. which g
you will recall {from Chapter 2} is fast access, read/write memory. Therefore. steps 1)
and 3) above are handled by the shaded microcomputer logic shown in Figure 5-2.
Physical units, you will recall, transmit information to and from the microcomputer ,_09.":(P T R
i gic. Wi ference to Figure 5-1 this may be illustrated as ©.9.. Keyboards, Displays, Printars
::: :::ropriate interface logic. With refer g Y and Bulk Data Storage Units
. Data Data Data Data
Physical in i = e
unitls)
Instructions Catiedl L
il = Unit e ‘ Memory
Data 1o be processed
Interface
Blectronics

Figure 5-3. Microcomputer Functional Logic Involved In
Data Modification

it But program memory and data memory could be one and the same memory;:
Instructions Cartal _QF_““_ moreover, it is possible for one part of a program to treat another part of the program as
Program :> Processi Ia S data, in which case the program changes itself. As you might expect. programs which
Memory Unit ket change themselves can become very complex; so at least while you are a beginner, it is
ﬁ wise to think of program memory and data memory as separate and distinct entities.

The fact that you do not have a good understanding yet of how program an_d data
memories work is unimportant. Photographs of program al_'ld t'lam memory chips are
shown in Chapters 1 and 2. These chips can store information in a computer-readable
form. For now that is all you need to know about program and data memory.

INFORMATION PATHS
Let us now consider the various information paths shown in Figure 5-1.
When the Central Processing Unit is modifying data. it usually fetches the data to be

ifi Its to data memory.
modified from data memory. and it usually returns the resu
Therefore there are paths in both directions between data memory and the

Central Processing Unit:

Logic beyond the Microcomputer
e.g.. Keyboards, Displays. Printers
and Bulk Data Storage Units

= il :ﬂ

Instructions

e > F ing A Memory
Memory Unit F e

Data 1o be processed

New data entering the microcomputer travels from external physical units to dat_a
memory via the Central Processing Unit. Results being output travel frorf\ memory via
the Central Processing Unit to external physical units. This may be illustrated as
follows:

Logic beyond the Microcomputer
e.g.. Keyboards, Displays. Printers
and Bulk Data Storage Units

Instructions
Program
Memory

High speed information transfer between floppy disk'and data memory frequently
occurs directly between these two devices, bypassing the CPU:

Data to be processed

Logic beyond the Microcomputer
.g.. Keyboards, Displays, Printers
and Bulk Data Storage Units

Data Data Data Data
in out n out
Results

Instructions Central | Data

Frog b F 9 Meamory
Memory Unit <___. |

Data to be processed

The data path illustrated above is referred to as Direct Memo- DIRECT
ry Access. Direct Memory Access is usually referred to by its MEMORY
initials: DMA. While memory has to be at one end of the DMA ACCESS
data transfer. a floppy disk need not be at the other end, even DMA
though it frequently is. Any external logic may provide the other
end of the DMA data transfer.

Whenever the Central Processing Unit is doing something — moving data or modifying
data — a stream of instructions transmitted from program memory to the Central Pro-
cessing Unit controls Central Processing Unit operations. Thus there must be a
unidirectional path for information to flow from program memory to the Central
Processing Unit:

Logic beyond the Microcomputer
e.9.. Keyboards, Displays, Printers
and Bulk Data Storage Units

Data Data Data Data
in out in out
ki Results
nstructions
Program -—‘> _Lc'.""fl :> Data
Memory N : < : Memory
Unit

Data to be processed

THE CENTRAL PROCESSING UNIT

Central to all microcomputer logic is the Central Processing Unit. The Central Pro-
cessing Unit is the electronic logic which actually performs all operations on data: that
is to say, in various other parts of the microcomputer system you can move data from
one location to another, but only within the Central Processing Unit can you actually
change data. o

The Central Processing Unit is usually referred to by its in- E
itials: ""CPU"".

SERIAL LOGIC

In order to generate the versatility and power commonly associated with com-
puters, Central Processing Unit logic must be capable of performing a large num-
ber of different operations; and that is indeed what the Central Processing Unit
can do. However, the Central Processing Unit can only perform one operation at a
time.

Consider the addition of two numbers; when two numbers are AUGEND
added. they are called the augend and the addend. The augend ADDEND
and the addend are summed via the following senal sequence of
evenls:

132 + 47 = 179
e — ——

L_—1'hianur||l:mristl\o

sum of the augend
and the addend
This ber is called
the addend

This number is called
the augend

Bring the
Augend to
the CPU

Bring the
Addend to
the CPU

Add the

O,
©,
OF B
®
®

Send the
Sum out
from the CPU

1

next
instruction

'

Each event is identified by a number@.@.@.@. etc. The CPU performs each
event as a single operation. Therefore. in order to perform the addition illustrated above.
the CPU performs event(1), then event(2). then event(3), then event @.

During the first step the augend is brought to the CPU
During the second step the addend is brought to the CPU

During the third step the augend and addend are summed by electronic logic within
the CPU

During the fourth step the sum is transmitted out from the CPU

These four steps are essentially identical to the four steps via which you will add
two numbers using some types of hand-held calculators.

During step one you will key in the augend:

During step two you will key in the addend:

' EMPON
z g
& O

5

&S
|
o
CEC 0o

LCI

During step three you will press the + key:

Step four occurs automatically: the sum is output, from logic of the calculator. to a dis-

play where you can read it:

T

Now you know why some calculators make you do things awkwardly; they force you to
use computer logic sequences.

Many calcutators use a more complex logic which lets you work in algebraic sequence,
which is the way we learned arithmetic

During step 1 you key in the augend or first number
During step 2 you press the + key.

During step 3 you key in the addend or second number.
Step 4 occurs automatically: the sum is output

We can use the four hand-held calculator steps leither ver- SERIAL
sion) via which you add two numbers to illustrate the concept DEVICES
of a serial device, since a hand-held calculator and a Central
Processing Unit are both serial devices; each can perform just one operation at a
time. This is simple enough to understand in the case of a hand-held calculator: you
cannot. for example. simultaneously key in the two numbers which are to be added.
The two numbers must be keyed in serially. one after the other. In the case of a Central
Processing Unit, you cannot simultaneously bring the augend and the addend to the
Central Processing Unit: each number must be fetched via an independent step. and
the two steps must occur one after the other

SERIAL LOGIC STEP

The next problem that we are going to run into is determin- INSTRUCTION
ing what a single “‘step’’ consists of. In the case of the hand- STEP

held calculator, this is not a very important consideration.
When you enter the number 132 via the keys. does entry of the entire number con-
stitute one "step”? Or does each keystroke constitute an individual “step”? Frankly. for
a hand-held calculator. this question is inconsequential. But what if you have to write
down a sequence of instructions which someone else must follow? You could write
down the following single step:

1) Enter 132 at the keyboard

You could break up the one step into three separate steps:

1) Press the 1 key
2) Press the 3 key
3) Press the 2 key .

Consider an even more mundane example: eating a piece of cake.

Suppose a piece of cake can be eaten in ten mouthsful: is eating this piece of cake a
ten-step process? Perhaps. but perhaps not. Eating a single mouthful of cake may itself
consist of these four steps:

1) Separate a piece of cake with your fork.

2) Impale the separated piece of cake on the end of your fork.
3) Transfer the separated piece of cake to your mouth.

4) Chew and swallow the piece of cake.

It would be easy to nitpick these four cake eating steps, creating | INSTRUCTIONS

any number of additional smaller steps. The same is true of single

Central Processing Unit steps. Some Central Processing Units perform operations in
relatively big steps: others sequence events as a series of relatively small steps. But for
every Central Processing Unit, every step is clearly and unambiguously defined as
an “instruction’’. There is nothing vague about an individual instruction, or step. that
can be executed by any Central Processing Unit.

Every Central Processing Unit responds to a fixed number INSTRUCTION
of instructions. These instructions, taken together, are SET

referred to as an instruction set. Typically a Central Prolce_ss-l :
ing Unit will have from 40 to 200 different instructions in its instruction set

Every instruction is represented by a unique number, which when tran_Srniltet_i to the
Central Processing Unit at the proper time. causes the Central Processing Unit to ex-
ecute the operations associated with the instruction. For example. our addition se-
quence may be illustrated as follows:

d by the number 156010048

Bring the
G) Augend 1o This b a single
the CPU

[

mm . o
Addend to This b a single P
the CPU

Y

Add the

®
@ Augend and This b a single instruction rep
O)

by the number 156010049

d by the number 128

the Addend

Y

Send the . M '
Sum Out This a single o

from the CPU

d by the number 096010043

CENTRAL PROCESSING UNIT LOCAL DATA STORAGE

The four instructions shown above illustrate a logistic problem associated with
the CPU.

The CPU has storage space to hold the data that it is about to operate on, and that
is all. This may be illustrated as follows:

Central Processing Unit
cj Data In
— - Logic to “E&
il of gt gy
W:yg ml:;l.:g EE

L add two numbers) -t

Data Out

Leiribpeigiac o,

You cannot expect to leave the augend, addend and sum in the Central Processing Unit
data storage space. because you will almost certainly need this space for the very next
operation which the Central Processing Unit performs. The augend. the addend and the
sum must therefore have permanent storage locations somewhere beyond the Central
Processing Unit—for example. in external read/write memory That is why

steps(1). 2. @are present.

PROGRAM MEMORY

In order to perform any operation, such as the illustrated addi-
tion, you must create a sequence of instructions, which taken
together constitute a program. The program is a sequence of numbers. This sequence
of numbers is stored in a fast access memory. which we call program memory. Using ar-
bitrarily assigned number codes for the addition instructions, the addition program
may be represented conceptually as follows:

PROGRAM

Program
Memaory
156

axm o)
l.'g }
LM {©)
28] @

The method used above to illustrate memory contents is one which you are going
to see frequently in this book, and in other books of this series. Memory is being
likened to a ladder of “pigeon holes™: each “pigeon hole” represents an individually
identifiable and addressable location.

Whenever a number is transferred from the CPU to memory. one “pigeon hole” will be
filled. When a number is transferred from memory to the CPU, the CPU receives the
contents of one “pigeon hole".

MEMORY LOCATIONS AND ADDRESSES

Each “’pigeon hole”" is called a ““memory location”. Every memory location is in-
dividually identifiable via a unique memory address.

We are not going to concern ourselves with how you create the memory address which
identifies any individual addressable location within memory; therefore the addition
program instruction sequence illustrated above will be represented occupying an un-
defined sequence of program memory locations as follows:

Program
Memory

e

L=1 0 L=} (=]
wal

o
-~
0

Without discussing memory addressing at all, we could illustrate the addition program
instruction sequence occurring in the first ten addressable locations of program memo-

ry as follows:

Program
Memory
M—TO 15
location 11 01
address 21 04
3] 15 |
41 O >
5] 049
6] 128
70 096
h s8]l 01
3| 049
etc.

It takes no understanding of computer logic in order to see how the first ten addressa-
ble locations of program memory may be filled with numbers as illustrated above. It is
going to take some understanding of computer logic in order to explain how we identify
any one of these. or any other memory location. This subject is discussed in Chapter 6.

DATA MEMORY

The information which is used by a program while it execules is referred to as data. In
our simple addition example we are going to handle three pieces of data: the
augend and the addend which are to be added, and the sum. These three pieces of
data will likely be stored in local, fast access data memory.

ADDITION PROGRAM EVENT SEQUENCE

:’hlr process of adding two numbers may now be illustrated conceptually as
ollows:

Step 1: Fetch the Augend

External Logic External Logic
‘ i] ﬂ

Program Data
Memory Memory
15 m

510 - =13
048)i i —
156 | ! j

010] ':-""")h.{ - LS o

D49

128 L

09 6)h

01

Step 2: Fetch the Addend:

External Logic External Logic
Program Data
Memory Memory
156
132
010 cPy "ki -
X i k] o
15 ¢ ' i
7 g 3 56 132 | i
5o 1) 01 a7
> 049
; b)
010
049

Step 3: Generate the Sum:

External Logic External Logic
Program Data
Memory Memory

. 132
KT e s Y
04
E —_—:)l 128 132
)10 i9

TE J 179

55 T |
010

049

Step 4: Qutput the Sum:

External Logic External Logic
AAh
Program Data
Memory Memory

of-—
W)
v |
i~
ol mf

=N A,

y

B
31

T
1

For each of the four steps illustrated above, the first event to occur will be the
transfer of an instruction code from program memory to the CPU. In each step the
instruction code is the shaded numbers in program memory. Th_e CPU cannot know
what to do until the instruction code has reached it. Once the instruction code has
reached the CPU. operations required by the step actually occur. Operations are self-
evident. z

Note that in Step 4 the sum is arbitrarily shown being written back to the same data
memory location from which the addend was feiched. Thus the addend will be lost

Chapter 6
PUTTING IT ALL TOGETHER

We will now look at the logic of the Central Processing Unit itself.
Chapter 5 superficially illustrated a Central Processing Unit as follows:

Central Processing Unit
ks c: Data In
! e §§
Instructions {__:) 5 g %:‘: g g
bewe| g g
- _:) Data Out
WORD SIZE

In Chapter 4 we saw how instruction codes and data of various types all eventually
become identical-looking bit patterns. Possibly the most important conceptual result of
Chapter 4 is the conclusion we must draw that two-state switches. or bits, are not very
useful on their own: but groups of bits can be interpreted variously and powerfully.
Therefore the first.and most important decision a microprocessor designer has to
make is to select the number of bits which the microprocessor will handle at one
time. We call this number the microprocessor “‘word size”. You could design a
microprocessor that uses as many bits as it needs at any given time: but no real
microprocessors are designed that way. All real microprocessors have some fixed word
size which applies to every type of information handled. Consider arithmetic; suppose
the microprocessor is to add 421310 and 2461(. This may be illustrated as follows:

Decimal Binary

1211109 B 7654 32 1 0= Bit No.
4213 1000001110101 Augend
+ 246 + 111101 1.0 Addend
=44569 T00010110101) Sum

The two numbers which are o be added require thirteen bits for the augend. eight bits
for the addend and thirteen bits for the sum A microprocessor could conceivably be
designed so that for the addition example illustrated above it assigns thirteen swuches;
for the augend and the sum, and eight swilches for the addend: but what happens i

the very next addition requires 7 switches for the augend. 15 switches for the add_encl'
and 16 swilches lfor the sum? Either the microprocessor must have some oversized
switch set and waste a lot of switches most of the time:

2221201918 1716151413121110 9 8 7 6 5 4 3 2 | O ==—Bit Number

S8 s

switch set
unused switches number this time

or the microprocessor must re-use the same switches in a variety of different ways: and
that could become unbelievably complicated:

rrflilllIllllllIlllllllllll]lllll-I:l
ey N — — p—

~ i
first sum first addend first augend
~ ~ W
second sum second addend second augend

The type of complex logic illustrated above gains you no pr_actaca_l adv;ntage over
adopting some fixed bit width for all information handling. Consider elgm bits; (remem-
ber, eight bits is referred to as a byte). Our addition example would be implemented in
byte units as follows:

IXIX'XIIIOIOIOIOI Of1]1f1]Of1]0]1] Augend

B

Wasted bits 1{1jrjrjojijo Addend

[x]x]x]|1]o]ofof1] e o]]0]1]1] sum

Yes indeed. there are some wasted bits, but the simplified logic is more than enough
compensation.

Most of the popular microprocessors on the market today handle information in 8-
bit units. Consequently these microprocessors are referred to as “"8-bit” machines. A
few obsolete microprocessors handle information in 4-bit units, while some of the
newer more powerful microprocessors handle information in 16-bit units. Notice
that these bit lengths —4, 8 and 16, are all designed o allow easy counting within a
binary system:

3210

One hexadecimal digit
76543210

CLLL L LT T]Jebeoe

Two hexadecimal digits
1514131211109 8 76 5 4 32 1 0

ENEENEEENEEEEEEEE

s e

Four hexadecimal digits

Let us look at the implications of a fixed word length. For an B-bit microcompuler.
all information — data, characters and instruction codes — must be stored in units of
eight binary digits. We are going to represent this 8-bit unit as follows:

7 6 543 2 1 0 -=—Binary digit number

LLL LT T | Je—-6naydgn

BUSSES

Information must also be transmitted from one part of a microcomputer system to
another. Since all information is handled as 8-bit units, all information transfers

must occur eight bits at a time; therefore these transfers occur via eight parallel
conductors:

7 b 5.43.2.1,0

This is
an 8-bit
4 bus
—
— -
L

‘We call the conductors “busses’”. A “bus” is nothing more than a collection of

electrical conducting lines over which binary data is transferred. A 1 bit or “on” switch
1s represented by the presence of voltage on the conductor; a 0 bit or “off”" switch is

represented by the absence of any voltage on the conductor. This may be illustrated as
follows:

1 +5 Voits

0 0 Volts

0 Ovolts f An g-line bus
Data register with 1 +5 Volts carrying binary
binary data 0 0 Volts dﬂashnwn?n

1 +5 Vohs the Data register

1 +5 Volts

0 0 Vaits

REPRESENTING BUS LINE SIGNALS

In order to identify signal levels on bus lines we resort to a shorthand. For a single bus
line we draw a continuous line: the line is high when voltage is present and it is Iow
when no voltage is present. This may be illustrated as follows.

=+ Xezes

—— Time

signal = 1
-0 1
I

When a bus has more than one line some lines may have voltage present while others
do not: We identify the instant at which one or more bus lines change state as follows:

= gy X
R T, i

one or more bus lines may change state a1 these points

Sometimes one signal's change in state triggers another signal's change in state. This
“triggering” action is represented as follows:

Trgger signal

Triggered signal

There is no significance to either signal change level: low-to-high —__J~ could be
substituted for high-to-low \ . and vice versa. What i1s important is that one
signal level change shown thus:

is identified as causing another signal to change state. shown thus:

v

»iad -

=il

B e s "l S

REGISTERS

The switches which hold information are called “‘registers’’. Information is
transmitted to and from registers via busses. Now we can immediately see that a 4-bit
microprocessor will be simpler than an 8-bit microprocessor, since every register or bus
requires only four switches or conducting lines, rather than eight. Similarly, a 16-bit
microprocessor has more complicated logic than an 8-bit microprocessor, because ev-
ery register or bus requires sixteen switches or conducting lines. rather than eight.

THE ARITHMETIC AND LOGIC UNIT

A microprocessor's word size applies also to logic which han- ALU
dles data manipulations. The various arithmetic and logic

operations described in Chapter 4 will all be performed on fixed bit length data
units, equal to the word size of the microprocessor. Thus for an 8-bit microprocessor
you will always have 8-bit data inputs to any arithmetic or Boolean operation. and you
will create an B-bit result. All of this logic is collected together in one location which
is referred to as an Arithmetic and Logic Unit. The Arithmetic and Logic Unit gets its
name from the fact that it performs arithmetic operations (add. subtract) and logic
operations; principal logic operations are the Boolean operations AND, OR, XOR and
NOT. The Arithmetic and Logic Unit is usually called an ALU. Figure 6-1 functionally il-
lustrates the logic of an Arithmetic and Logic Unit.

In addition to performing the arithmetic and Boolean operations described in
Chapter 4, an Arithmetic and Logic Unit (ALU) will probably be able to shift data
left:

Before the left shift

After the right shift

The 0 and 1 bits shown in the shift illustrations have been selected arbitrarily and have
no particular significance.

We are not going to concern ourselves with the actual method used to create ad-
dition logic — or any other logic within the ALU. Only someone who is actually
designing microprocessors needs this type of detail. What is worth noting is that the
Arithmetic and Logic Unit (ALU) has one or more busses bringing it data input. and one
or more busses via which data is transmitted out. (The ALU will probably have one or
more internal busses. as shown in Figure 6-1. but these are of no concern to you.)
Busses become 4-bit busses for a 4-bit microprocessor. 8-bit busses for an 8-bit
microprocessor. and 16-bit busses for a 16-bit microprocessor.

Arithmetic and Logic Unit

—

- Status flags g —
—— Shitter logic >
3
2 - NOT logic e
«

a——=] AND. OR, XOR logic jeag—t—

Addition logic eli—t—-

Figura 6-1. The Anthmetic and Logic Unit

The only important aspect of Figure 6-1 is the fact that an Arithmetic and Logic
Unit (ALU) must be present, and it performs the actual data manipulations that
may be required. For these data manipulations to actually occur. data must be transfer-
rad from data registers. via appropriate busses. 1o the Arithmetic and Logic Unit (ALU)
The results of any data manipulations must be translerred via an appropriate bus back
1o a data register. Thus the only "magic” which remains unexplained in any compuler
operation 15 the actual procedure whereby operations within the Arithmetic and Logic
Unit (ALU) occur. We are not going to describe internal ALU logic since there are praba-
bly as many ways of accomplishing the task as there are logic designers, furthermore.
10 you as a microprocessor user, the subject is of no interest. Bul remember. no matter
how complicated a computer operation you want to perform. it will ulimately be
broken down into a serial sequence ol steps. each of which involves sending binary
data input lo the ALU and receiving binary data results from the ALU

R, e e

Since the Arithmetic and Logic Unit (ALU) receives operands from data registers
and returns results to data registers, we must add appropriate data registers on
one side of the ALU:

CPU logic on the data
side of the ALU
- A
Arithmetic and Logic Unit 3
e —— 1 Status flags l-’-
el — 1 Shifter logic i
§ é One or more
Pl norooe Jatal BTN e
@ : & registers
Fall——4 AND, OR, XOR logic [ei—f—i
8-bit Bus
Data path to external data memory
i1 I N
- 0 et K >
L

On the other side of the ALU we need a register which holds CONTROL T ADD'T'ON AL CPU LOGI c
the instruction that determines which part of the ALU will be UNIT

used, and how it will be used. The "“which’ and "how"_doter-) 9N O ECENTIPARITE LT I e
ination i k of logic which we will call the “"Control Unit™: ‘
mination is made by a new block of log Spay il

8-bit Bus Data path from On the data side of the ALU we need one or more registers to OPERANDS
program memory

hold data that is being operated on by the ALU. There is no

et “common sense’’ number of data registers which every designer will include on
X the data side of the ALU; you might, for example, assume that three registers is a
good idea, because many arithmetic and Boolsan operations use Iwo operands and
create one result:

CPU logic on the program -
5 2 Augend, minuend,
side of the ALU <:> Rogister A e g
Control These are
Uni called
; operands
Addend, subtrahend,
i @ Registor B second number, etc.
CPU logic on the
Coneick somts * data side of the ALU
—
Anthmetic and Logic Unit ‘ ki
— [
. Status flags |- . -But by breaking up the arithmetic or Boolean operation into a number of steps you

could get by with just one Data register. Here are the necessary steps:

1) * Bring the first operand to the Data register:

Shifter logic =1
Data register
3 3 One or more &>
NOT D @ 8-bit
5 B logic ~eith— % i
¢ D .
J - ——y/ data memory
AND, OR, XOR logic jai—1—i-
2) Perform any ALU operations. fetching one operand from the Data register, the other
8-Bit Bus operand directly from external memory:
Data path to data memory
A N,
2 . e P b K- % Oata rogister

ALU

A »

)‘0

'y v data memory

3) Return the result to the Data register:

M 10
,)'Gnnﬂuﬂnw

A

But there are also good arguments for having more than three data registers on the
data side of the ALU. Data can be transferred between a register and the ALU much
faster than data can be transferred between external data memory and the ALU. This is
because there are very few data registers in the CPU, so you can immediately identify
the register which is going to be accessed There are a large number of external data
memory locations, which means that every time the Central Processing Unit (CPU) ac-
cesses an external data memory location there will be a whole memory location iden-
tification step involved: that is to say. Central Processing Unit (CPU) logic must spend
time figuring out exactly which data memory location it 1s supposed to access. This
may be illustrated as follows:

Simple logic can
keep track of one register
out of four, which
must be accessed

USING DATA REGISTERS

By having many data registers, a microprocessor allows you to maintain within
the CPU any data which you are going to access frequently. To decide on the op-
timal number of data registers for a CPU we need to have some understanding of
the function that data registers serve. We will therefore depart from our immedi-
ate discussion in order to look at a real example of how data registers are used. In
Joe Bitburger's bill paying program, whenever Joe enters a character via the
keyboard, the program tests the character to see if it is an "Escape’” or a “Car-
riage Return’’. Now some microcomputers do not have a “test” instruction: lacking
test instructions you perform a test by subtracting the incoming character code

fmrl"l the “Escape’” character, and then from the ““Carriage Return’’ character.
Logic may be illustrated as follows:

Subtract character
from “Escape”™

difference - character is “Escape’”

Character is not
g o
“Caninge Retum'”

We w!ill represent a “"Carriage Return” keyboard character using the symbol
Does it make sense to subtract a letter of the alphabet from a Carriage Return?

C) -a=?

To a human this subtraction makes no sense: but BINARY DATA
remember. microcomputers represent characters via MULTIPLE

binary digit patterns —and they also represent num- INTERPRETATIONS
bers via binary digit patterns. Do you recall how fre-
quently you were told in Chapter 4 that you must remember how a binary digit pattern
is being interpreted? Now we see that this has its advantages as well as giving you
more 10 remember. Suppose Joe Bitburger presses the A key at his keyboard. The
microcomputer sees the following binary digit pattern arrive from the keyboard:

01000001
This bit pattern will arrive on an Bdine bus. as follows:

W -
0
voitage <& { o voltege
on these g - on these
lines 0 ::: fines
0
PHER- -

So far as the microcomputer is concerned, this is a simple binary digit pattern. If you
preserve it in memory and re-use it later, you could send it out to a video display in
order to echo the A: the video display has been designed to interpret all incoming bit
patterns as ASCIl characters. But within the Central Processing Unit (CPU) a bit pattern

is simply a bit pattern. Thus you can subtract the A bit pattern from the Carriage Return
bit pattern. treating each as pure binary data. This may be illustrated as follows:

@ 00001101
o - 01000001
/"CC]G 1100110

ASCIl character code

So_long as you do not write anything into the registers holding the A or

characters, the registers’ contents will be preserved. The next time you ac-
cess these same registers, you can interpret the contents as ASCII characters. For
example. you could transmit the A character code to the video display to generate an
echo right after subtracting the A character code from a Carriage return. We can now
represent the whole instruction sequence which receives and tests incoming characters
using this more complete flowchart: (See Appendix B)

¥

Load 00011011
representing Escape
character into
Register A

o T TS Sl A

Following each subtraction, you will use a status flag in order to ZERO
determine if the character is a Carriage Return or an Escape code STATUS
Nearly all microprocessors have a status flag called the Zero FLAG
status. This flag is used 1o detect zero results as follows:

If result is 0, Zero status flag is 1.
If result is not 0. Zero status flag is 0.

By a perverse twist of logic the Zero status fiag is always set to 1 for a zero result and it
is set to O for a nonzero result. Now we can create our character testing logic via the
following instruction sequence:

contents f
Register A contents.
This is equivalent to

® is the instruction which is 10 be executed il a Carriage Return rather than an A is
entered via the keyboard. You select this instruction and identify it by its program
memory address — that is (o say. the address of the program memory location where
the instruction code is stored
All of this has been something of a departure from our discussion at hand — the
correct number of registers to have on the data side of the ALU. But now that we
understand how Data registers are used, can we justify some “‘correct’’ number
of Data registers, which every microprocessor should have? Unfortunately there
is no ““correct’’ number, rather the microprocessor designer has to make tradeoffs.
How much of the limited logic is he going to set aside for registers and how much for
other things? Remember it takes eight switches for each register. plus connections from
the register to busses within the microprocessor. The same switches and bus space
could be used in a variety of other ways.
Commonly you will find between 4 and 8 registers on the data | cpy

side of the ALU; however you may have as few as 1 register | MEMORY
and as many as 32. There are also some micropre ors that
have a small part of data memory within the CPU. There may be 64 or more data
memory locations within the Central Processing Unit. These storage locations are some-
thing more than external data memory locations, yet something less than true data
registers.

THE INSTRUCTION REGISTER AND CONTROL UNIT

On the program memory side of the ALU, there must be a single register within
which we can hold the binary code representing the instruction currently being
executed. We refer to this as the Instruction register.

Suppose the instruction currently being executed adds the contents of Data registers A
and B, returning the sum to Data Register A. (We assume for the moment that Data
Registers A and B exist on the data side of the CPU.) The appropriate instruction binary
code will be brought (as datal to the Central Processing Unit where it will be stored in
the Instruction register.

6-13

The conlents of the Instruction register act as one of 256 different "triggers” to a block
of logic called the Control Unit: there are 256 different “triggers” because there are 256
combinations of 0 and 1 bits that you can generate out of eight bits. A 16-bit
microprocessor would have a 16-bit Instruction register — with 65,536 different 0 and
1 bit combinations.

The Instruction register “trigger” initiates a sequence of signals output by the Control
Unit to enable the data transfers and ALU operations required by the instruction being
executed

There is very little you need to know about the Control Unit, the Instruction
register and the way in which they interact; the Control Unit creates control signals
that move data where it is supposed to be moved and exercise ALU lagic at the proper
time. For microcomputers currently on the market. there is nothing you, as a microcom-
puter user. can do about the Control Unit: you cannot. for example. modify the way in
which it responds to an instruction code. The Control Unit acts as the link between an
instruction and the events which occur when the instruction is executed. That is all you
need to know about the Control Unit.

But the size of the Instruction register is important. An 8-bit Instruction register
can only specify 256 different operations and variations on operations. That is
because there are only 256 different patterns of 0 and 1 digits that you can create out
of eight binary digits. 256 may seem like a large number. but in reality it is not. Con-
sider Arithmetic and Logic Unit operations. Within this block of logic we have
defined just seven operations:

Shift left
Shift right
Complement
AND

OR
Exclusive-OR
Add

Even though there are only seven ALU operations, the instruction has much more
to define; it must define the sources for the operands. and the destination for the
result. Suppose you have four Data registers (Registers A, B, C and D). You will need
two of the eight instruction object code bits each time you have to identify one of the

four registers.

iy

select Register A

01 select Register B

10 select Register C

11 select Register D
6-14

In other words. an instruction code must be absolutely specific. If you have four register
options, you will need four separate and distinct binary digit codes to specify the
selected option. Thus the 8-bit instruction‘'code may be illustrated as follows:
76 854.3:2-19 'ﬂ_—-ﬁtw
Instruction register

Specity 1

Specify 2
Specify result
Specify the ALU operation

We might arbitrarily assume that for each of the three register specifications the Con-
trol Unit will interpret instruction code bits as follows:

00 - Select Data Register A
01 - Select Data Register B
10 - Select Data Register C
11 - Select Data Register D .

Instruction register bits 6 and 7 might be interpreted by the Control Unit as follows:

Add

AND

OR
Exclusive-OR

——0cO0oNw®m
—O=0ong

Here is one example of how an instruction code would be interpreted:

7 &5 4 3 2 1 0 -s—— Bt Number
[0]0[1]0]0]1]0]0 Jet—rnstruction register

The of Data Register A
and the of Data Register B
wil be added with the sum
stored in Data Register C

We have accurately illustrated the way in which the Control Unit decodes instruction
register contents, but the illustration, while conceptually accurate. is impractical.

The bit patterns illustrated above apply only to four of the seven ALU operations — the
four that require two input operands. But these four operations, together with their op-
tions, use up all 256 instruction codes. There are no codes left for any other ALU opera-
tions, nor for any of the instructions that do not use the ALU. Clearly 256 possible in-
struction combinations is not very many. In Volume | we will explore the way in
which microprocessor designers spread the limited number of instruction code op-
tions among all the types of instructions which must be present, giving a limited
capability within each class of instructions. This is a process which is easily un-
derstood, since it is about the same as getting by on a limited budget. You do not
have enough money to do everything you would like to do, therefore you limit
yourself in all areas, striking the best balance between lifestyle and income.

LOGIC CONCEPTS AND TIMING

Even though the exact workings of a Control Unit are unimportant to you, there
are some logic concepts which are important because they apply universally with-
in microcomputer systems. We will now look at these concepts.

Any sequence of logic operations within the CPU (or any other part of a microcom-
puter system) will consist of moving binary data and changing binary data. -

Within the CPU. binary data must be moved between data registers. the ALU and exter-
nal logic. Binary data i1s changed only within the ALU

In any other part of a microcomputer system. binary data will be moved between
registers and the data will be modified by logic that is simpler than, but similar to the
ALU.

LOGIC TO MOVE BINARY DATA

In order to move binary data, a control signal must be created GATE
to act as a connector between a register switch and a bus line. SIGNAL
This control signal is sometimes referred to as a gate. You may
gate data from bus lines into a register:

I
- =l
S ——— LD (VI 0 (— “off”" switches or O bits
+5y e 0“09"!1«
Four | ————0 | O—] 1
ol -
lines) ———=0 | O—— 0
+5Y ——t—
—_ 0 ! O— 1 “on" switches or 1 bits
! of register

l

Control
signal

The switch position {or register bit) may be gated onto a bus line:

1
1

0o p—o0 | o0—»
— L6V
1 | O——————{ Fow
] ¥ bus
0 Py i
* ‘s\f
1 —0 , O0—-x—>

|

Control
signal

Timing is extremely important during these data transfer [INSTRUCTION
operations because it takes a finite amount of time for voltage TIMING

levels to appear or disappear on bus lines; and until a steady
state exists on the bus line, logic cannot connect the bus lines to any new switch.

6-16

Also, the sequence of events corresponding to any instruction’s execution must
occur in some very specific order. Consider our addition example; this would be
the necessary event sequence within the Central Processing Unit:

Step 1} Bring the instruction code into the Instruction register

8-bit Bus

Data path from

Program memory
)

Control Unit
CPU logic on data
Control signals * side of the ALU
Arithmetic and Logic Unit - m— -
e b=

g — Status flags -t | <t Register A

—8] Stifter logic] =] Rogisier s

NOT logic i i Register C

g AND. OR, XOR logic feti—t~e] eag— Register D

8-bit Bus
Data path to data memaory
A ~,

6-17

Step 2) Gate Register A contents onto the Bus \ Step 3} Gate Bus to Addition logic

B-bit Bus
e Data path from
Data path from st
Program memory #, 2 f 4 :
— > Register > Register i

Control Control
Unit Unit
CPU logic on data - CPU logic on data
Cm‘uolslwuh* * side of the ALU Coniyol sigee * * side of the ALU
Avrithmetic and Logic Unit o~ e S Arithmetic and Logic Unit - - ~
— r—
Y Operand 1 i
ag—] Stotus flags el h—b - Rogister A (Augend) f—f Status fiags femgd—e] g Register A
a—>| Shifter logic e8] feg—B=] Register B g—®=] Shifter logic feg—] fag—B»] Registern
2l ' | @ 3
: lat—] NOT logic |- i ad—=] Rogister C Z ["—»=] NOTlogic] o bag—p] Regster C
: : i
etl—8={ AND, OR. XOR logic [|=—8={ Register D [—] AND. OR. XOR logic et - Register D
8-bit Bus 8-bit Bus
Data path 1o data memory Data path to data memory
Addition A —') Addition
- logie - K 8 Pt fogic --»--1_"(: >
—_— e e

Step 4)

Gate Register B contents onto the Bus

8-bit Bus

Data path from

Program memory

Register

6-20

Control
Unit
CPU logic on data
Control signals + * side of the ALU
-

Arithmetic and Logic Unit o i
- Status flags 1 - Register A
egl— Shiftor logic e — Register B

& 3
o |-_—— NOT logic e i g Register C
g—] AND, OR, XOR logic feeti— & Register D
B-bit Bus
Data path to data memory
Addition
B logic e L & D

Step 6) Add
8-bit Bus
Data path from
i)

Arithmetic and Logic Unit

- Status flags i

Shifter logic - i~

AND, OR. XOR logic i

6-21

CPU logic on data
side of the ALU
————— e e—
r— Register A
- Register B
é :
‘; — Register C
©
- — Register D
8-bit Bus
Data path to data memory

Step 6) Gate sum onto the Bus
8-bit Bus
Data path from
Program memaory
] Regh

-

Control
Unit
CPU logic on data
Control signals i side of the ALU
e,
Arithmetic and Logic Unit - .
— T
g —— Status flags e e Register A
fel— - Shifter logic — g — Register B
é a
H i NOT logic — g Register C
: §
e—84 AND, OR. XOR logic i~ — " Register D
8-bit Bus

6-22

Data path to data memory

e

N

Step 7)

Gate sum into Register C

8-bit Bus
Data path from
Program memory
; o
Control
Unit
CPU logic on data
Control signals * * side of the ALU
Arithmetic and Logic Unit T T~
r
—| St flags fe—t] leag—8] Rogister A
e Shifter logic g | Register B
é 8
2 — NOT logic |t — Register C Resuits
& i register
rl—={ AND, OR, XOR logic e~ - Register D
8-bit Bus
Addition Data path to datd memory

6-23

THE CLOCK SIGNAL AND INSTRUCTION

EXECUTION TIMING

Event sequences such as the seven steps just illustrated are scheduled by a clock
“signal which is so named because it generates regular, periodic voltage pulses; a
clock signal may be illustrated as follows:

e ey BE T s IR AN |
0 Volts == === ‘
- :

These are all identical time intervals

The clock signal illustrated above is shown switching between 0 volts and +5 volts.
While these voltage level$ are commonly seen in microcomputer circuits, there i1s no in-
trinsic reason why they should be selected. Functionally it makes absolutely no
difference what voltages are selected. The logical.necessities of chip design demand
that some two voltages are used to represent a clock signal. The same two voltage
levels may also be used to represent 0 and 1 binary digit levels: Older microprocessors
use more than two voltage levels. Additional voltage levels simply make the job of
designing the chip easier. they play no part in representing 0 or 1 binary digits.

The transition from no voitage to some voltage is referred to SIGNAL

as the leading edge of a clock signal: LEADING
EDGE

+5Volts — === :r——

0 Volts — = —
The transition from voltage to no voltage is referred to as the SIGNAL
- trailing edge of a clock signal: TRAILING

EDGE

+5 Volts —— = —
0 Volts —— = == — —\——
All signals have leading and trailing edges. not just clock signals.

The leading and/or trailing edges of the clock signal are used to time events within
the Central Processing Unit and throughout the microcomputer system. For our ad-
dition example this may be illustrated conceptually as follows:

v oy N AN
R e = R

Step 3 Step 4 Step 5 Step 6 Step 7

Step 1 Step 2

More time follows Step 1 than any other step since the Control Unit must be given time
to decode the Instruction register contents.

Different microcomputers have different types of clock signals, ranging from the
very simple to the very complex. There may also be more than one clock signal. in
which case the many clock signals will have some definite relationship to each other.
But in every case it is the clock signal which acts as the master event sequencer

. for all logic.

6-24

ARy

Let us lock again at an instruction execution’s event sequen

E\{ery instruction’s execution must begin with a sti:et::t :;?_';:UCTWN
brings the instruction binary code from program memory to
the I_n_struction register. We call this step an "Instruction Fetch’". Once the instruc-
tion mr.a_rv code is in the Instruction register the Control Unit takes over — after bein
triggered appropriately by the Instruction register. The Control Unit acquires as mucE
lime as it needs in order 10 generate the logic events required by the instruction. After
all logic events have been completed. the Control Unit initiates the next instruction
fetch. Thus, every instruction’s execution may be divided into an Instruction Fetch
phase and an Instruction Execute phase. This is illustrated as follows:

Instruction 1

Instruction 2 Instruction 3

Ihe Instruction Fetch_ phase will take the same amount of time for every instruc-
dlit:.:l. But t_he Instr_uctton Execute phase will require different amounts of time for
erent instructions. Some microprocessors have variable instruction execution
times: but in order to simplify logic. other microprocessors use one. or a very few, fixed
:1:;21::';: e;i:;:holn ttl'mcs. Suppose, for example, different instructions require
e p s af ing one, two, three or four clock pulses. If the instruction
fetch phase I_as:s one clock pulse. then we could design the MICroprocessor 1o exec
Instructions in two, three. four or five pulses e

te—— Five clock pulse instruction ————{ji

lel—— Four clock pulse -

Three clock pulse
nstruction

-—

Two clock puise
mstruction

1 One pulse!
| execute

I
el

: Two pulse execute ! |
1

I

I"‘— Three pulse execute —-n-:

\ I

|

1

[Four puise execute —————fiy
I

Fetch f

6-25

Given the above situation. a microprocessor designer may decide to make all in-
structions last five clock pulses, wasting the unused clock pulses for the shorter in-
structions. I, on the other hand. there were very few long instructions. the
microprocessor designer may decide to standardize on a four clock pulse instruc-
tion time, using two instruction times for the few five clock pulse instructions.
This may be illustrated as follows:

Five clock pulse instruction uses eight
R clock pulsas to keep multiples of four

lagl—— Four clock pulse instruction

Clock

|
| One pulsel Two wasted pulses |
execule . |
| 1

Two pulse execute | one
| wasted

| pulse
Three pulse executs

1
. l
. |
I |
.
1
L]

SRR AR

e - —
Ferch : Four pulse execute i Three wasted pulses |
In the illustration above, four clock pulses constitute an impor- MACHINE

tant Control Unit time interval. it is the basic time unit for all in- CYCLE
struction executions. This time unit is frequently called a
“*Machine Cycle’’. All microprocessors do not use a fixed time interval machine cycle
to time instruction executions; but for those that do. all instructions will execute in
some fixed number of machine cycles — usually one machine cycle, but sometimes
two or three machine cycles.

But all instructions are executed in some fixed number of clock pulses. Therefore, the
speed with which your microcomputer executes programs will vary linearly with
the speed of your clock signal.

A clock signal’s speed is also referred to as the clock signal CLOCK
frequency. Clock signal frequency may be illustrated as follows: SIGNAL
FREQUENCY

6-26

The clock period is the time tha OCK

! : t elapses between repeated CL

|de|_1t|cel clock wave shapes occurring. Nowadays clock MOSEP:I:OD
periods are measured in nanoseconds. One nanosecond is - -
equal to one thousandth of one millionth of one second MICROSECOND

(1 x 10-9 seconds). The period of a
; clock signal will ical
vary between one hundred nanoseconds and five tlr:ndro:’l
nanoseconds. A few microprocessors use a clock sign i
! : ! al of
microsecond is equal to.one millionth of a second. ’ e R

The frequency of a clock signal is the reciprocal of the clock

; _ cle ME

per_iod. that is to say. itis equal to one second divided by the clock e

period. Tl:lqs. if the period is one microsecond, the frequency will o

be|ona million pulses per second. A clock signal with one million .

::! ::i:hper se_eond is referred to as a one megahertz (MHz) clock signal. A clock sig-
a period of five hundred nanoseconds will have two million pulses per second:

1 1 10 000 000

500 x 10-9 i : 2O I

Therefqre this‘clock signal is referred to as a two
clock signal with a period of one hundred nanoseco

megahertz (2 MHz) clock signal. A
nds will generate ten million pulses

per second:
1 1
= =1
100 x 10-9 1%x10°7 090900

Therefore this clock signal is said to have a frequency of ten megahertz (10 MHz)

MEMORY ACCESS

Nothing rmc::i can happen within a microcomputer system before a memory ac

cess occurs. For example. every instruction begins with an instructi bl

$ i tion fetch. -

g:::sat::tlth: c;r?tentshof some identifiable program memory location be ie‘::w:: raes

oaded into the Instruction register. Similarly. any dat. isi

3 ! : 5 that is in a Data
regicter must be fetched either from an external i ot

_ ! physical unit. or from data ;

results of ALU operations in Data registers must be sent back to data n-|emor|\1,|r-I e;ni:r:’.

even a small memory will have more than one thousand addressable Iomtiu.ns the

method for ide i a
inediately appal:oti:: ng the single location which you wish to access is not im-

We earlier showed how it was possible to identif

; n : ¥
bits of the instruction code: v one of four Data registers using two

00 =Data register A
01 = Data register B
10 = Data register C
11 = Data register D

6-27

This easy method of addressing Data registers, if applied 1o‘e><lernz’;1 memaory. may have
to address up 1o 65.536 memory locations: it takes a 16 binary digit number to select
one addressable location out of 65.536:

A G s] e]
\J—N

* 0000000000000000 — Select
memory location 0045
0000000000000001 — Select
memory location 0145
etc.

directly address a memory location by

i ters do allow you to
Now many microcompu y irtasiiad b

supplying a 16-bit memory address; but this means the instruction i
three bytes of binary data. nol one:

76543210 7508 .32 10 s 5432 D

l_rliIIIJ_II—FIIIHIJ{_HIHI-I_I
N — e’

*—__15-hl memory address

8-bit jon code

But there are some problems associated with this approach to creating memory

addresses.

In the first place it is rather wasteful of memory. Given the frequency with which
memory reference instructions occur, and the fact that most microcomputers do not
have anywhere close to 65.536 bytes of memory actually present, some alternative.
more economical memory addressing procedures would be gesnrame furtherr‘nore, in
most microcomputer systems even though we speak o.f program’’ memory and
“data’’ memory, they are usually one and the same thing: .

This part of memory
holds program

This part of memory
holds data

6-28

When you write a program for a microcomputer, you decide which part of memory
becomes program memory: the remainder of memory is data memory. But the next
time you write a program, or if someone else writes a program for the same microcom-
puter, you may find memory allocated between the program and data areas in com-
pletely different ways:

Program Memory

Frequently you will write simple programs (for example. to perform arithmetic on stan-
dard dollar amount numbers): the programs will be much more useful if you can
reuse them in many applications. To do this you will need some memory address-
ing technique that identifies a data memory location in terms of its displacement
(or distance) from the beginning of the data area of memory, rather than from the
beginning of memory:

Address is
distance from
start of data
mamary
Program Memory Pro M
I
—
—t= =
Data Memory Data Memory

Let us look at the advantages of identifying a memory location by its displacement
from the beginning of a data area. The most important advantage is that you can
move the data area without having to change programs that access the data area. In
order to understand why this is so. consider the everyday problem of identifying time.
You can identify time by the timie of day — which is equivalent to absolute memory ad-
dressing — or you can identify time as some number of hours before of after a movable
event: this is equivalen! to addressing memory as a displacement from the beginning of
the data area. Suppose for example, you have to leave instructions for the preparation
of dinner. Your instructions could state:

1) Turn the oven on at 6:00 p.m.

2} At16:15 p.m. place the stew in the oven.
3) Remove the stew at 8:15 p.m

4) Serve at 8:30 pim.

6-29

If you change dinner time, you must change all of your dinner preparation instructions.
On the other hand. you could rewrite the dinner preparation instructions as follows:*
1) Turn the oven on 2-1/2 hours before dinner.

2) At 2-1/4 hours before dinner put the stew in the oven.

3) Fifteen minutes before dinner take the stew out of the oven. -

4) Serve dinner at dinner time.

Since these instructions address time as a displacement from dinner time. changing *

dinner time does not change dinner preparation instructions. Clearly this 1s a more
useful way of addressing time: il is equivalent to addressing memory via a displace-
ment from the beginning of a data area.

Without exploring memory address creation ideas much further, it is clear that a
case can be made for having a variety of different memory address creation tech-
nigues.

Memory addressing is the term used to describe in general MEMORY
the techniques which a microprocessor allows you to use ADDRESSING
in order to identify memory locations.

Let us look at exactly how memory addresses work.

MEMORY ADDRESSING LOGIC

Memory itself will consist of logic devices that handle three types of informa-
tion: addresses, data and control signals.

Every memory access starts with an address being transmitted to the memory device:

is output on the
Address Bus

You will recall from our discussion earlier in this chapter that we use the shorthand:

b
A

Signals change here

to identify the instant at which one or more signals on a multiline bus may change their
level For a single signal we can show the actual change — from-low tohigh:

or from high to low:

S AR

6-20

0 8,0 .]
ol WA 111

[} H H
CONTROL /A DATA

anoaess A

Figure 6-2. Microcomputer System Busses

A memory address consists of binary data being output on an ADDRESS
appropriate bus which we call lfor self-evident reasons) the Ad- BUS

dress Bus. The Address Bus. like any other bus. is a number of

paralle_l conductors connecting the Central Processing Unit (CPU) to memory devices of
the microcomputer system. This is illustrated in Figure 6-2

There will be a separate Data Bus connecting the Central Pro- DATA
cessing Unit to memory devices: the Data Bus is also illustrated in BUS

Figure 6-2. Once the Central Processing Unit {CPU) places binary
data on a bus. there is no longer any possibility for errors in interpretation. Binary data

appearing on the Address Bus must be interpreted as an address. while binary data ap-
pearing on the Data Bus must be interpreted as data

Timing illus‘ttations in this chapter show the address appearing on the Address
Bus at the rising edge of a clock pulse. Logic within the Central Processing Unit (CPU)
will use an appropriate rising clock pulse edge as the trigger to create control signals
that connect Address Bus lines to a Data register within the CPU. It is this connection
which causes the data to become an address

Iéogic \:ithin the Central Processing Unit will probably be able to connect the Data
us and the Address Bus to the same Data registers. This allows you to compute ad-

6-31

dresses, like any other data. before outputting the data as an address on the Address
Bus. This may be illustrated as follows:

ALU

Data Bus

HL(,_ v>

The important conceptual point to understand is that logic within the CEU canI u;:e;g;:f
binary data in any way. But once the data appears on a bus beyond the entrad ::rmine
ing Unit (CPU). the bus upon which the data appears will. to a limited extené, B i
how the data is to be interpreted. For example, information on the Addressh us :\et 3
a memory address. but this memory address can come from anvw:\iere wit I;nl 1 . useé
and external logic is only “supposed” to interpret it as an address. If externa ‘ nlag i
the Address Bus in some other way. CPU logic will not interfere, but external logic
better know what it is doing

Let us now look at the way in which the CPU and memory devices converse via
bus lines.

Every memory location within a memory device will have a unique address;ssocnqlletd
with it. The memory device decodes the binary data on-the Address Bus and uses i c.:
“select” a single memory location. Subsequently dalta may be_ transmitted to thedmenll:e
ry device, via the Data Bus. in which case for a write operation it will be stf:;reI in :
selected memory location; or for a read operation data may be transmitted rr?mCPS
memory device, via the Data Bus. to the CPU Pomrol signals genera_t_ed by ‘l_: i
Control Unit determine whether the CPU “reads” data from memory or wr_ltes' a :‘:
memory. Thus, the connection between memory and th_e CPU will_con_slst usa; :
dress Bus, a Data Bus and control signals. These are illustrated in Figure 6-2 an
represented functionally as follows:

Clock

AL

-

]
1

Address A0 l
Bus A5 —

=

Data

=t

N

Write

£
R o e

|

NOTE: One trigger signal __f)- is shown
triggering changes
in more than one triggered signal level.

The memory device has this time with-
in which it must decode the Address
Bus and select one memory location.

6-37

' There are some important concepts embodied in the illustration above.

Consider first the Address Bus. This is shown as consisting of 16 parallel lines,
which is the commonest size for microcomputer Address Busses. A 16-line Ad-
dress Bus can carry a 16-bit address — capable of addressing up to 65,536
different memory locations.

The address itself is shown being gated onto the Address Bus at the rising edge of a
clock pulse. The address is maintained on the Address Bus for two clock pulses: for this
time period the Central Processing Unit keeps the Address Bus lines connected to the
Data register bits out of which the address is being generated. We refer to this time
period as the period during which the address is “stable” on the Address Bus.

Now look at the Data Bus. Once again there will be some period of time during which
data on the Data Bus must be stable: this period will again be defined by clock signal
edges. The Data Bus will start being stable at some time interval after the Address Bus
is stable: this is necessary since logic at the memory device must be given time to
receive and respond to the address on the Address Bus, so that by the time the data is

stable on the Data Bus, the addressed memory location has had time to become
selected.

If a memory read operation is to occur, then the Read control MEMORY
signal will be pulsed. A low pulse is arbitrarily illustrated: READ
however it could just as easily be a high pulse. In either case what CONTROL

is important is that the control signal has a “passive” state during
which nothing happens and an “active” state during which it indicates something is
happening — in this case a read operation is occurring.

A read operation requires that the addressed memory location contents be placed
on the Data Bus. Once again it is going to take some amount of time for logic at the
memory device to sense the low Read pulse and respond to it by placing data from the
addressed memory location on the Data Bus. The low Read pulse must therefore occur

early enough to give memory logic time to transfer data from the selected memory loca-
tion to the Data Bus:

e i (I o SR e R T
e~ f

Data I
Memory control logic needs this much time to

fetch data from the addressed memory location
and place it on the Data Bus.

The microprocessor demands data be
stable on the Data Bus at this time.

Therefore the Read control signal must go low

here,
The Write control signal, which again is shown as a low pulse MEMORY
signal, indicates that data on the Data Bus is to be written into WRITE
the addressed memory word. The Write control signal acts as a CONTROL
-strobe: it cannot occur “true” (a low pulse is “true”) until valid

data is stable on the Data Bus. This is because the memory device will use the low
Write strobe in order to connect the Data Bus to the addressed memory location. Were

the low Write strobe to oceur in advance of stable data on the Data Bus. erroneous data
might get written into the memory device.

Let us look at memory read and write operations individually. MEEAT)ORY
First of all, here is timing associated with a read operation: R
7 3 OPERATION
Clock Pulse 1 Clock Pulse 2 Clock Pulse 3

N R |
00 | \\l\ \ !

R __J omsme X :
: : : :

The memory read operation begins on the leading edge of clock pulse 1. The Central
Processing Unit uses this clock pulse lo connect appropriate Data registers to the Ad-
dress Bus and this initiates a stable address appearing on the Address Bus:

1
: Clock Pulse 1 ! Clock Pulse 2 : Clock Puise 3 |
| I | |
| [| |

Clock
! I 1

AD] | [

1

Ao, I [\} Adoress Stabie ’
Bus Al5 : - .
05 | \ \ |

bely : : \ l Data Stable y

Bus o7 : - : :
)) 1
I !] |

Read " 1 i ;

|
] 1 : l
i 1

Very shortly thereafter the Read control signal goes low:

| Clock Puise 1 | Clock Puise 2 y Clock Pulse 3 i
] 1 1 i
1] 1 ;
| 1 I i
Clock
L]] '
AD |
Address .
: Address Stable \ l i
Bus H
Al5
2 \‘ I]
: I
g A x Data Stable |
H ta St
Bes o7 ! i
I] | 1
! '
o 1 ‘ : ,
1
1 I I
1 I 1 1
' I 1 1

Memory logic decodes the contents of the Address Bus in order to identify a single
memory location as “selected”. This memory location select logic is nothing more than
a combination of Boolean operations performed on the individual signals of the Address
Bus. However. for now, the actual method used by a memory device to decode the con-
tents of the Address Bus is not important So long as you realize that logic exists to
select one single memory location out of 65,636 possibilities. that is all that matters
The accompanying Read control signal causes the memory device to connect the bits of
the selected memory location to the Data Bus. The process of identifying a single
memory location. and then connecting it with a Data Bus. must occur before the lead-
ing edge of clock pulse 2:

Clock Pulse 1 Clock Pulse 3

E

At this time the contents of the selected memory location must be stable on _the Daga
Bus. This data must be held stable on the Data Bus for some finite amount of time: this
is the amount of time the Central Processing Unit must be given in order to get the data

off the Data Bus and load it into an appropriate Data register:

Clock Pulse 1 Clock Pulse 2

Clock Pulse 3

Clock
1 1
AD } i
Address - \
s A'L'n——ll . :
e |\\ i
Data g 1 T
e et \ r Data Stable :
] 1 I]
| | |
I . i |
Read : ‘ | ' I
1 ! | |
L] 1 [’

The CPU connects the appropriate Data register to the Data Bus and thus the read is

completed.

In the illustrations above. one clock pulse is shown as the time duration during which

the data on the Data Bus is held stable.

Now consider a memory write operation. Its timing may be il- | MEMORY
lustrated as follows: WRITE
OPERATION
: Clock Pulse 1 : Clock Pulse 2 | Clock Pulse 3 :
]
: | 1 '
] i “q I
Clock
] L] 1
A 1 l |
e : I Address Stable | \ :
o]] (] L]
' 1 \ \ '
R DataSuable § !
s B7 =t . ' | i
]] I |
e : : %
1 1 1]
! | | 1

Timing associated with a memory write operation does not differ significantly from tim- I|
Ing associated with a memory read operation. The logic which outputs a stable address i
on the Address Bus is in fact identical for the two operations. Differences occur on the |
Data Bus and the control signals. When the address appears on the Address Bus there
IS no accompanying low Write control signal: therefore the selected memaory location is {
not connected to the Data Bus and its contents are not output on the Data Bus. Subse- l
quently the Central Processing Unit connects an appropriate Data register to the Data
| Bus in order to output stable data:

I Clock Pulse 1 I Clock Pulse 2 I Clock Pulse 3 !
I | I | 1
' 1 1 i i
I 1 I f 1
Clock l ' l
| 3 I
I : f y i
Address »WO - - ||'
Bus : Address Stable 1
AlS z L J
[1 \ 1 | '.r
i W
1 Data D.O 1 ! l I 1
: Data Stable ' '
] Bus D7 [1 |
| I 1 i
I I 1
Write ' 3 :
1] | |
1 I I
I 1 | |

At this time the Write control signal is pulsed low. The Write control signal will be
received by the memory device and used to connect the selected memory location to
1 the Data Bus so that the contents of the Data Bus are written into the selected memory
i location and permanently stored

| Clock Pulse 1 1 Clock Pulse 2 | Clock Pulse 3 '
* i : |
I
Clock 1 '
: 1 i
AD 1 |
o 2 T e X | !
u AlS A L |
!] \ T) ;
o ? : Data Stable, : '
Bus 57 | A :
! | 1 1
| | | | |
I 1 1 |
Write
: : . : |
i 1 1 i I
I I 1 I
:) To memory ! I
word identified * p
by Address

ol

PROGRAM MEMORY ADDRESSING AND

THE PROGRAM COUNTER

Let us now look at the CPU registers that are required in order to‘creato memory
addresses. We will begin by looking at program memory addressing.

Logic required to address program memory is quile slranghtforward A program is
nothing more than a sequence of instruction codes which will normally be stored in
memory locations with incrementing addresses:

Program
Memory
First program
memory address ___ge. 0314 2 A jeal}— start of program
After instruction ’ g;:: :l! ‘F:
fetch, incrament 0310 0 2
oo oE| 1A
Gy 2 o3 [F 1
0320 2 C
0321 3 A
0322 F
0323 A
0324 0 C
9325 0 A
0326 2 C
0327 1 F
etc.
S ——

These hexadecimal
numbsers have been
arbitrarily selected

10 reprasent instruction
codes.

6-38

This being the case, all we need to do is identify the address PROGRAM
of the first instruction within the sequence. After every in- COUNTER
Struction fetch, if we increment this address, then it will ac-
curately point to the next instruction in the sequence. This program memory ad-
dressing logic is handled by a register referred to as a Program Counter. The Pro-
gram Counter contains binary data which is interpreted as a memory address only
because the binary data is output on to the Address Bus. Thus the Program Counter
provides the memory address for all instruction fetch operations; to external memory an

instruction fetch looks exactly like any memory read operation. This may be illustrated
as follows:

Clock Pulse 1 Clock Pulse 2

Clock Puise 3

- = L o4 k-

I
i]
: | :
P FL
8
N\ ALU
;
e '_7<

PROGRAM LOGIC AND THE PROGRAM COUNTER

The Program Counter is treated within the Central Processing Unit logic both as an
address generation register and as a Data register. It is very important that the
Program Counter be accessible as.a Data register because this is the basis for pro-
gram logic.

We have already seen in program flowcharts decision-making steps which allow the
program to continue by executing the next sequential instruction. or some out-of-se-
quence instruction:

L saquentially
previous
instruction
No to some out of
This instruction sequence
instruction
Yos

sequentially

next instruction

'

How do we identify and then fetch an out-of-sequence instruction? The answer is by
knowing in advance the address of this out-of-sequence instruction. If we load this
known address. as data. into the Program Counter, we execute a Jump instruction.
When the Jump instruction is executed, the Program Counter is pointing to the Jump
instruction itself:

Arbitrary memary Arbitrary memory
addresses at which addresses at which
instructions are instructions are

assumed to be stored assumed to be stored

Alter the Jump instruction has been fetched. the Program Counter will be left pointing

to the next sequential instruction:
Arbitrary memory
addresses at which

nstructions are
assumed to be stored

A!bd'llav ll'!o!ll)l\r
addresses at which
instructions are
assumed to be stored

s

Program Counter

02A3

If the Jump is to occur, then the Central Processing Unit will make the Jump happen by
loading the out-of-sequence instruction’s address, as data, into the Program Counter.
This data is loaded into the Program Counter during the instruction execule phase of
the Jump instruction:

Asbitrary memory
addresses at which
instructions are
assumed to be stored

Arbitrary memory
addresses at which
instructions are
assumed to be stored

02A245

Program Counter

041A

Now when the Jump instruction has finished executing. and the next instruction starts
executing. an instruction fetch will occur: but instead of getting the next sequential in-
struction. you get the new. out-of-sequence instruction.

DATA MEMORY ADDRESSING REGISTERS

As we saw earlier in this chapter, addressing data memory is not as straightforward as
addressing program memory. because there is no'usual” sequence in which data will
be stored. Thus a variety of ingenious techniques are used to create addresses for data
memaory.

Data memory address computation becomes a simple extension of logic on the data

side of the Arithmetic and Logic Unit (ALU). Given Data registers in which we can store -

binary data, plus an Arithmetic and Logic Unit which we can use to perform computa-
tions. we have all the prerequisites to calculate binary data which will subsequently
become data memory addresses. Thus data memory address computation is easily
handled by logic already present in a Central Processing Unit.

In this book we are not going to discuss the various methods used to create data
memory addresses. This is information which only becomes necessary when you
start learning how to write programs in assembly language, and that is material for
Volume I. A data memory address is the result of data computations that preceded a
data access; that is all you need to understand for now.

6-47

EXTERNAL LOGIC ADDRESSING

In order to access some external logic or peripheral device (such as a keyboard or
video display), the Central Processing Unit (CPU) will go through a sequence of
ste_ps thgt are very similar to those required to access memory. The actual external
logic device being accessed will have a specific address, just as every memory location
has a specific address. Thus accessing the external device consists of these steps:

1) Generate an I/0 device address. This address is a binary number which is created
as data and then output on an Address Bus

2) Trigger appropriate control signals which tell the 1/0 device what to do.

3) Transmit or receive data via a Data Bus

T'he. event sequence associated with accessing external logic or 1/0 devices is so
similar to a memory reference that many microprocessors treat the two as one
and the same thing. In this case. I/0 devices and external logic respond to exactly the
same signals as a memory device. and the only thing which separates the two is the
memory addresses which are set aside for each

Microprocessors that treat memory and I/0 devices separately have, in effect. a second-
ary set of logic that essentially duplicates memory addressing logic — but on a smaller
scale. For example. where the Address Bus for memory commonly consists of 16 lines
capable of addressing 66,636 individual memory locations, the I/O Address Bus might
be only 8 lines wide, which means that 256 different 1/0 devices may be addressed.

6-43

INSTRUCTION SETS AND PROGRAMMING

The instructions of a microprocessor, you will recall, identify the individual opera-
tions which can be performed as single entities by logic within the
microprocessor. There are five types of events which may be specified by in-
dividual instructions; they may be illustrated as follows:

Microprocessor Instructions

®

Transferring data
between the

and logic DATA

beyond the
MICrOPIOCesson gy @

Moving data from cPU
one register 1o
another within
the microprocessor ALU
Registers
L[]1]{s:
T| '| £8
@ Specifying an CPU
arithmetic or ALY
logic unit ADD, AND, OR
operation XOR, COMP, SHIFT
Registers
ESs
s =
E g
8
5 2 T
Counter (PC) <
contents and
thus enabling
programmed
logic

Status flag manipulation “condition” in
type (@) instruction is one example of status.

.44

Let us consider these instruction types one at a time.

|n_stmctlnus that move data between 'the microprocessor and logic beyond the
microprocessor may access memory or physical devices. Physical devices beyond
the microcomputer system are referred to generally as input/output (or I/0) devices. In-
structions that access 1/0 devices are called 1/O instructions. Some microprocessors
have separate instructions to transfer data between the microprocessor and 1/0
devices or memory:

Microprocessor Instructions

O]

Transferring data

between the

and logic

beyond the CcPU DATA

1/0 Devices

Moving data from cPU
one register to
another within
the microprocessor ALY

ADD, AND, OR
XOR, COMP, SHIFT

programmed true, go Y
log to X

® A
Status flag manipulation “condition’” in
type (&) instruction is one exampie of status.

‘Other microprocessors use the same instructions to transfer data between the
microprocessor and memory or 1/O devices:

Microprocessor Instructions

Transferring data k:'c <::>
between the DATA s realy
miCroprocessor D/opS 3
st g U <:> the CPU is present.
beyond the o
i memory <:>
1/0 devices “fake it",
P ding to be me Y
which in reality
@ is not present
Moving data from CPU
one register to
another within
the microprocessor ALU
Registers
L] s
Specifying an cPU
ssithmetic or ALU
logic unit ADD, AND, OR
operation XOR, COMP, SHIFT
Registers
§ £
i
Modifying Program
Counter (PC)
contents and W
thus enabling condition
programmed true, go ¥
logic to X -
X

Status flag manipulation “condition™ in
type @ instruction is one example of status.

—

You will recall from our earlier discussion of signals and busses that there is really
very little difference between 1/0 and memory reference instructions. /0
reference instructions generate control signals identifying transfer of data to or from an
1/0 device:

1/0 READ \ /

1/0 WRITE \

—

Memory reference instructions generate equivalent signals:

MEMORY READ \

WRITE

f'"-
AL SSUER R

1/0 READ \

1/0 WRITE \ I

A microprocessor that uses the same instructions to access memory or an I/0 device
will simply have one set of control signals:

ANY READ \ J

When a microprocessor uses the same control signals to access memory or 1/0 devices,
logic associated with the memory address distinguishes between memory or an 1/Q
device Whoever designs the microcomputer decides which addresses will, indeed, ac-
cess memory. and which addresses will instead select an 1/0 device.

Note that just because a microprocessor has separate memory and 1/0 instructions a
microcomputer designer does not have to use the I/0 instructions. The microcomputer
designer could still address 1/O devices as though they were memory locations. The
converse is not true. A microprocessor that has no I/O instructions forces the
microcomputer designer to address /O devices as memory locations. In every case.
You. as a microcomputer user. have no choice. You must use memory reference and 1/0
reference instructions exactly as the microcomputer designer tells you to

The number and complexity of instructions that move data between CPU
registers is strictly a function of the number of registers provided by the
microprocessor. Obviously a microprocessor that only has one addressable register is
not going to have any instructions to move data between registers. A microprocessor
that has two addressable registers could have two such instructions:

]" Move B to A

A
I e —Maove A to B e I

Register B]

As the number of registers within the CPU increases. the microprocessor will run out of
possibilities. Suppose. for example. a microprocessor has 16 addressable registers. In
order to move data from any one of the 16 registers (as the source) to any one of the 16
registers (as the destination). the microprocessor instruction code must have some bits
to identify every possible source register and every possible destination register.

I_ H—— Instruction code (bits unspecified)

These bits specify the source
register.

-~ Thasa bits specify the destination
registar,

These bits specify the move
instruction.

But it takes four instruction object code bits to identify 1 of 16 registers:

T T e B ~—— Instruction code

0000 Register 0
0001 Register 1
0010 Register 2
0011~ Register 3
- 0100 Register 4
0101 Register 5
0110- Register &
* 0111 Register 7
1000 Register 8
1001 Register 9
1010 Register 10
1011 Register 11
1100 Register 12
1101 Register 13
1110 Register 14
1111 Register 15

if four instruction object code bits are. needed to specify the source register, and
another four instruction object code bits are needed to specify the destination register,
then for an 8-bit microprocessor, all eight instruction object code bits will be used up
simply specifying instructions that move data between a source register and a destina-
tion register:

76543210

Instruction code

Define the source register =
Bl s s Z

No codes left 1!

One solution adopted by many microprocessor designers-is to have a “primary”
register, often referred to as an Accumulator: the Accumulator must be the source or
the destination for any data movement within the CPU. Now instructions that move
data from one location to another within a CPU must always move the data through the

Accumulator. For the case of 16 registers we now need just four bits to define the

selected register:

76 5 43210

I I I I I | J_ I I"'——Inslmcnonregista!

Salect a register.

Two of the 16 combinations from

these four bits identify two
instructions:

1} Move data from the Accumulator

to the selected register.

2] Move data from the selected
register to the Accumulator,

Notice that we can still move data from any one register to any other, but this operation
is going to require two instructions rather than one. This may be illustrated as follows:

Register 3 ~—————————f= Register 7

becomes

Register 3 - A i

A - Rogister 7

Let us now look at instructions that specify arithmetic and logic unit operations.
Generally there are two classes of arithmetic and logic operations: those that re-
quire two operands and those that require one operand. The ADD, AND, OR and EX-

CLUSIVE OR operations require two operands:

Operand 1 £y

ADD
AND

XOR

VP a—

m—

COMPLEMENT, SHIFT and ROTATE operations requ

ire one operand:

Operand £ swrT

ROTATE

> Result

Operands can come from one of three locations:
® From a register within the microprocessor
® From an external memory or 1/0 location
® As a constant provided by the instruction itself

e —

Consider first two operand instructions. You have six possibilities, just for the
operands. Using the notation [] to signify “contents of ", these possibilities may be il-
lustrated as follows:

[Register]
> ALU —Result
[Register]
[Regislar]-._._‘“
ALU —®Result
[Memory or l/O]""'

[Register]

> ALU——=Result
[Constant]
[Memory or ”0"““

ALU—®Result
[Memory or 1;’0!/'

Let us arbitrarily select the ADD operation and examine the possibilities.

You might add the contents of one register to another. The sum may be stored in one of
the two operand registers, it may be stored in a third register. or it may be stored in an
external memory or I/O device location. Storing the result in a “constant” would be
meaningless since it would destroy the constant

You could add the contents of a register and an external memory or I/0 location. Once
again the sum could be stored in one of the operand locations, or in some separate loca-
tion.

An instruction could also specify that the contents of two external memory or I/0 loca-
tions be added. with the sum being stored in a register. in one of the operand locations.
or in a different external memory or I/O location.

In practice very few microprocessors have instructions that allow two operands to be
fetched from two external memory locations. This is because the microprocessor must
execute an external memory read for each operand and that results in relatively com-
plex overall instructions. For example. it would take four memory references. occurring
within one instruction execution in order to add the contents of two external memory
locations. This may be illustrated as follows:

pe R

, Frstmemory ! , ™ | Fourth memory :
\ reference I raference reference ' reference
Read the Read the first Read the ‘Write the
instruction operand from second . result 10
code from memory operand memory
memory from memory

6-50

There is nothing intrinsically impossible about having a complex instruction. as illustr-
ated above, and in fact many minicomputers have such instructions. - But
microprocessors are generally simpler than minicomputers. Typically microprocessors
are limited to the instruction fetch. and one additional memory reference during one in-
struction’s execution time. Therefore one operand can come from memory (or an 1/0
device). or the result can be stored in memory or an 1/0 device. but not both.

An operand may also be a constant. The constant is provided by the instruction code.
An instruction could for example. specify that a constant value 3 be added to the con-
tents of a CPU register or external memory location. An instruction which specifies a
constant actually includes the constant as part of the instruction. This may be illustr-
ated as follows:

7:6 543210

fel}—— Second instruction code byte holds constant

In reality a constant is nothing more than the contents of a location in program memory.
But since program memory frequently becomes Read Only Memory. the constant does
indeed become a constant — because it resides in a part of memory that can never be
modified.

ALU operations that require a single operand may specify the contents of a
register, memory location or 1/0O device as the operand. Microprocessor instruc-
tions will not allow you to specify a constant as the input for a single operand ALU
instruction because that would make no sense. For example. an instruction to com-
plement 3 would be an unnecessary instruction: you know what the complement of 3
is. so you might as well store this value in the first place. Instructions that modify the
Program Counter contents fall into one of three categories. These are:

1) Instructions that unconditionally modify the Program Counter contents

2) Instructions that modify the Program Counter contents only when specific condi-
tions identified by appropriate status are met

3) Instructions that save the contents of-the Program Counter before modifying it.
These instructions give you the opportunity to return to the point where the Pro-
gram Counter contents were changed. You can return to the point where the Pro-
gram Counter contents were changed by restoring to the Program Counter the
value which you saved before changing it.

While instructions that move data and manipulate ALU logic are self-evident, in-
structions that manipulate the Program Counter contents are logically elusive to a
novice programmer. This is because these instructions, along with status instruc-
tions, implement programming logic — a subject which makes no sense to you un-
til you understand programming in the first place. We therefore defer until Volume
1 any reasonable discussion of these instruction types.

The purpose of the foregoing summary of instruction.types-has been to identify

the types of operations which may constitute a microprocessor's instruction set. .

Clearly at this point you are a long way from looking at a microprocessor instruc-
tion set and being able to use it. You are, however, ready to move on to “An In-
troduction To Microcomputers: Volume 1 — Basic Concepts’’ which covers es-
sentially the same material as Chapters 4, 5 and 6 of this book, but in much more
detail. By the time you have finished reading ‘“Volume 1 — Basic Concepts”, you
will be in a position to start using microprocessors.

B i R T T oy o L T T~ SR B W e et s i T BT oY e PR e L R

APPENDIX A
ASCII CHARACTER CODES
b7 - | 0 0 0 0 1 1 1 1
b6 —a| 0 0 1 1 0 0 1 1
bb - 0 1 0 0 1 0 1
B Column
T 5| ba [b3[b2| b1| Row 0 1 o “Pegile iy el
0|0|0 |0 0 NUL | DLE SP 0 @ P $ D
olo]o 1 SOH_| DC1] 1 Al Q a q
0j0]1]0 2 STX | DC2 r 2 B R b r
ojof1 1 3 ETX |DC3 Ea 3 G S [s
0]1]0]0 4 EOT |DC4 $ 4 D T d t
of1]0]1 5 ENQ | NAK % 5 E U e u
of1f1]0 6 ACK | SYN & 6 F V f v
[IERERE i/ BEL |ETB 2 Tl W g w
1]10{0]0 8 BS CAN (8 H % h X
1{0f0|1 9 HT EM) 9 | Y i y
1{oj1]0 10 LF SuB -5 : J 4 1 Z
1lof1]1 11 VT__|ESC | + K [k
1{110]0 12 FF FS < L \ |
1[1]o[1 13 CR - |GS : = M] m
1{1]1]0 14 SO RS . o N A n ~
HEHE S 7 U I R S
NUL Null DC1 Device control 1
SOH Start of heading DC2 Device control 2
STX Stan of text DC3 Device control 3
ETX End of text DC4 Device control 4
EOT End of transmission NAK Negative acknowledge
ENQ Enquiry STN - Synchronous idle
ACK Acknowledge ETB . End of transmission block
BEL ° Bell. or alarm CAN Cancel
BS Backspace EM - End of medium
HT Horizontal tabulation SUB Substitute
LF Line feed ESC Escape
VT Vertical tabulation FS File separator
FF Form feed GS Group separator
CR Carriage. return RS Record separator
SO Shift out us Unit separator
Sl Shift in SP Space
DLE Data link escape DEL = Delete

APPENDIX B
STANDARD FLOWCHART SYMBOLS

Input-output

arithmetic and
data movement

Connector point

Connector amows

Terminal point

JLoUoUd

Flowcharts are a pictorial representation of computer program organization. They show
the sequence of operations and are therefore helpiul to the programmer in localing er-
rors in program design. Flowcharts use the above standard symbals which are com-
prehensible 1o a non-programmer. The symbols used represent operations. dala. [low.
and equipment

ABOUT THE AUTHOR

Adam Osborne is president of Osborne and Associates,
Inc., a California corporation.

Osborne and Associates, Inc., are microcomputer consul-
tants. We will design your microcomputer based product
for you, or we will help you do the job for yourself.

To order additional copies of this book, or to inquire about
our services, write or telephone:

Osborne and Associates, Inc.
630 Bancroft Way
Berkeley, California 94710
(415) 548-2805
TWX 910-366-7277

Other books from
Osborne & Associates, Inc.

An Introduction to Microcomputers
Volume 1— Basic Concepts

Volume 2 — Some Real Microprocessors (1978 ed.)
Volume 3 — Some Real Support Devices (1978 ed.)

Volumes 2 and 3 — Update subscriptions

8080 Programming for Logic Design
6800 Programming for Logic Design
Z80 Programming for Logic Design

8080A /8085 Assembly Language Programming
6800 Assembly Language Programming

Z80 Assembly Language Programming

6502 Assembly Language Programming

Some Common BASIC Programs

PET Cassette — Some Common BASIC Programs
Payroll with Cost Accounting

Accounts Payable and Accounts Receivable
General Ledger

“The latest volume in the classic series An Introduction
to Microcomputers, The Beginne:’'s Book is probably
the most realistic and thorough orientation guide for the
new computer enthusiast available . . . Osborne con-
centrates on educating the reader about the functional
capabilities that the computer and peripherals he buys
should have.”

-Computer Dealer, March 1978

““__. it presents general concepts in a way that gives the
reader confidence and a sense of achievement . . . All in
all Volume 0 is an excellent introduction and one | high-
ly recommend.”’

-Tom Williams, People’s Computers
March 1978

Created out of a demand for a primer to Volume 1,
Volume 0 —The Beginner's Book introduces the
novice to the world of microcomputers. While clearly
defining technical terms, it provides an overview of
microcomputer components and how these compo-
nents relate to each other within a microcomputer,
system. The book serves as a basic introductory text on
programming languages, binary code and arithmetic,
operators, logic, timing and memory, or as a refresher
for those already familiar with these concepts.

AN INTRODUCTION TO MICROCOMPUTERS

Volume 0 — The Beginner’'s Book
Volume 1 — Basic Concepts

Volume 2 — Some Real Microprocessors
Volume 3 — Some Real Support Devices

ISBN 0-931988-26-8

	ws0000
	ws0001
	ws0002
	ws0003
	ws0004
	ws0005
	ws0006
	ws0007
	ws0008
	ws0009
	ws0010
	ws0011
	ws0012
	ws0013
	ws0014
	ws0015
	ws0016
	ws0017
	ws0018
	ws0019
	ws0020
	ws0021
	ws0022
	ws0023
	ws0024
	ws0025
	ws0026
	ws0027
	ws0028
	ws0029
	ws0030
	ws0031
	ws0032
	ws0033
	ws0034
	ws0035
	ws0036
	ws0037
	ws0038
	ws0039
	ws0040
	ws0041
	ws0042
	ws0043
	ws0044
	ws0045
	ws0046
	ws0047
	ws0048
	ws0049
	ws0050
	ws0051
	ws0052
	ws0053
	ws0054
	ws0055
	ws0056
	ws0057
	ws0058
	ws0059
	ws0060
	ws0061
	ws0062
	ws0063
	ws0064
	ws0065
	ws0066
	ws0067
	ws0068
	ws0069
	ws0070
	ws0071
	ws0072
	ws0073
	ws0074
	ws0075
	ws0076
	ws0077
	ws0078
	ws0079
	ws0080
	ws0081
	ws0082
	ws0083
	ws0084
	ws0085
	ws0086
	ws0088
	ws0089
	ws0090
	ws0091
	ws0092
	ws0093
	ws0094
	ws0095
	ws0096
	ws0097
	ws0098
	ws0099
	ws0100
	ws0101
	ws0102
	ws0103
	ws0104
	ws0105
	ws0106
	ws0107
	ws0108
	ws0109
	ws0110
	ws0111
	ws0112
	ws0113
	ws0114
	ws0116
	ws0117
	ws0118
	ws0119
	ws0120
	ws0121
	ws0122
	z

